Two-stage CenterNet

Overview

Probabilistic two-stage detection

Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network.

Probabilistic two-stage detection,
Xingyi Zhou, Vladlen Koltun, Philipp Krähenbühl,
arXiv technical report (arXiv 2103.07461)

Contact: [email protected]. Any questions or discussions are welcomed!

Abstract

We develop a probabilistic interpretation of two-stage object detection. We show that this probabilistic interpretation motivates a number of common empirical training practices. It also suggests changes to two-stage detection pipelines. Specifically, the first stage should infer proper object-vs-background likelihoods, which should then inform the overall score of the detector. A standard region proposal network (RPN) cannot infer this likelihood sufficiently well, but many one-stage detectors can. We show how to build a probabilistic two-stage detector from any state-of-the-art one-stage detector. The resulting detectors are faster and more accurate than both their one- and two-stage precursors. Our detector achieves 56.4 mAP on COCO test-dev with single-scale testing, outperforming all published results. Using a lightweight backbone, our detector achieves 49.2 mAP on COCO at 33 fps on a Titan Xp.

Summary

  • Two-stage CenterNet: First stage estimates object probabilities, second stage conditionally classifies objects.

  • Resulting detector is faster and more accurate than both traditional two-stage detectors (fewer proposals required), and one-stage detectors (lighter first stage head).

  • Our best model achieves 56.4 mAP on COCO test-dev.

  • This repo also includes a detectron2-based CenterNet implementation with better accuracy (42.5 mAP at 70FPS) and a new FPN version of CenterNet (40.2 mAP with Res50_1x).

Main results

All models are trained with multi-scale training, and tested with a single scale. The FPS is tested on a Titan RTX GPU. More models and details can be found in the MODEL_ZOO.

COCO

Model COCO val mAP FPS
CenterNet-S4_DLA_8x 42.5 71
CenterNet2_R50_1x 42.9 24
CenterNet2_X101-DCN_2x 49.9 8
CenterNet2_R2-101-DCN-BiFPN_4x+4x_1560_ST 56.1 5
CenterNet2_DLA-BiFPN-P5_24x_ST 49.2 38

LVIS

Model val mAP box
CenterNet2_R50_1x 26.5
CenterNet2_FedLoss_R50_1x 28.3

Objects365

Model val mAP
CenterNet2_R50_1x 22.6

Installation

Our project is developed on detectron2. Please follow the official detectron2 installation. All our code is under projects/CenterNet2/. In theory, you should be able to copy-paste projects/CenterNet2/ to the latest detectron2 release or your own detectron2 repo to run our project. There might be API changes in future detectron2 releases that make it incompatible.

Demo

We use the default detectron2 demo script. To run inference on an image folder using our pre-trained model, run

python projects/CenterNet2/demo/demo.py --config-file projects/CenterNet2/configs/CenterNet2_R50_1x.yaml --input path/to/image/ --opts MODEL.WEIGHTS models/CenterNet2_R50_1x.pth

Benchmark evaluation and training

Please check detectron2 GETTING_STARTED.md for running evaluation and training. Our config files are under projects/CenterNet2/configs and the pre-trained models are in the MODEL_ZOO.

License

Our code under projects/CenterNet2/ is under Apache 2.0 license. projects/CenterNet2/centernet/modeling/backbone/bifpn_fcos.py are from AdelaiDet, which follows the original non-commercial license. The code from detectron2 follows the original Apache 2.0 license.

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{zhou2021probablistic,
  title={Probabilistic two-stage detection},
  author={Zhou, Xingyi and Koltun, Vladlen and Kr{\"a}henb{\"u}hl, Philipp},
  booktitle={arXiv preprint arXiv:2103.07461},
  year={2021}
}
Owner
Xingyi Zhou
CS Ph.D. student at UT Austin.
Xingyi Zhou
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation

This repository contains the code accompanying the paper " FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation" Paper link: R

20 Jun 29, 2022
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a

Siddharth Sharma 19 Dec 09, 2022
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 31, 2022
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras

Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras which will then be used to generate residuals

Federico Lopez 2 Jan 14, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks

AttentionHTR PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks. Scene Text

Dmitrijs Kass 31 Dec 22, 2022
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023