GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

Related tags

Deep LearningGUPNet
Overview

GUPNet

This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection".

vis2

citation

If you find our work useful in your research, please consider citing:

@article{lu2021geometry,
title={Geometry Uncertainty Projection Network for Monocular 3D Object Detection},
author={Lu, Yan and Ma, Xinzhu and Yang, Lei and Zhang, Tianzhu and Liu, Yating and Chu, Qi and Yan, Junjie and Ouyang, Wanli},
journal={arXiv preprint arXiv:2107.13774},year={2021}}

Usage

Train

Download the KITTI dataset from KITTI website, including left color images, camera calibration matrices and training labels.

Clone this project and then go to the code directory:

git clone https://github.com/SuperMHP/GUPNet.git
cd code

We train the model on the following environments:

Python 3.6
Pytorch 1.1
Cuda 9.0

You can build the environment easily by installing the requirements:

pip install -r requirements.yml

Train the model:

CUDA_VISIBLE_DEVICES=0,1,2 python tools/train_val.py

Evaluate

After training the model will directly feedback the detection files for evaluation (If so, you can skip this setep). But if you want to test a given checkpoint, you need to modify the "resume" of the "tester" in the code/experiments/config.yaml and then run:

python tools/train_val.py -e

After that, please use the kitti evaluation devkit (deails can be refered to FrustumPointNet) to evaluate:

g++ evaluate_object_3d_offline_apXX.cpp -o evaluate_object_3d_offline_ap
../../tools/kitti_eval/evaluate_object_3d_offline_apXX KITTI_LABEL_DIR ./output

We also provide the trained checkpoint which achieved the best multi-category performance on the validation set. It can be downloaded at here. This checkpoint performance is as follow:

Models [email protected]=0.7 [email protected]=0.5 [email protected]=0.5
Easy Mod Hard Easy Mod Hard Easy Mod Hard
original paper 22.76% 16.46% 13.72% - - - - - -
released chpt 23.19% 16.23% 13.57% 11.29% 7.05% 6.36% 9.49% 5.01% 4.14%

Test (I will modify this section to be more automatical in future)

Modify the train set to the trainval set (You can modify it in the code/libs/helpers/dataloader_helper.py), and then modify the input of the evaluation function to the test set (code/tools/train_val.py).

Compressed the output file to a zip file (Please note that this zip file do NOT include any root directory):

cd outputs/data
zip -r submission.zip .

submit this file to the KITTI page (You need to register an account.)

We also give our trained checkpoint on the trainval dataset. You can download it from here. This checkpoint performance is as follow (KITTI page):

Models [email protected]=0.7 [email protected]=0.5 [email protected]=0.5
Easy Mod Hard Easy Mod Hard Easy Mod Hard
original paper 20.11% 14.20% 11.77% 14.72% 9.53% 7.87% 4.18% 2.65% 2.09%
released chpt 22.26% 15.02% 13.12% 14.95% 9.76% 8.41% 5.58% 3.21% 2.66%

Other relative things

  1. The releases code is originally set to train on multi-category here. If you would like to train on the single category (Car), please modify the code/experiments/config.yaml. Single-category training can lead to higher performance on the Car.

  2. This implementation includes some tricks that do not describe in the paper. Please feel free to ask me in the issue. And I will also update the principle of them in the supplementary materials

  3. The overall code cannot completely remove randomness because we use some functions which do not have reproduced implementation (e.g. ROI align). So the performance may have a certain degree of jitter, which is normal for this project.

Contact

If you have any question about this project, please feel free to contact [email protected].

Owner
Yan Lu
Yan Lu
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
An unreferenced image captioning metric (ACL-21)

UMIC This repository provides an unferenced image captioning metric from our ACL 2021 paper UMIC: An Unreferenced Metric for Image Captioning via Cont

hwanheelee 14 Nov 20, 2022
Datasets, Transforms and Models specific to Computer Vision

torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat

13.1k Jan 02, 2023
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

291 Dec 24, 2022
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
NEG loss implemented in pytorch

Pytorch Negative Sampling Loss Negative Sampling Loss implemented in PyTorch. Usage neg_loss = NEG_loss(num_classes, embedding_size) optimizer =

Daniil Gavrilov 123 Sep 13, 2022