An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

Related tags

Deep LearningEVolve
Overview

EVolve

Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem.

Overview

EVolve is a linked mantle degassing and atmospheric growth code, which models the growth of a rocky planet's secondary atmosphere under the influence of volcanism.

Installation

EVolve is written in Python3, and is incompatible with Python 2.7. Two very useful tools to set up python environments:
Pip - package installer for Python
Anaconda - virtual environment manager

  1. Clone the repository with submodules and enter directory

    git clone --recurse-submodules [email protected]:pipliggins/evolve.git
    

    Note: If you don't clone with submodules you won't get the two modules used to run EVolve, the EVo volcanic degassing model and the FastChem equilibrium chemistry code.

  2. Compile FastChem:

    cd fastchem
    git submodules update --init --recursive
    mkdir build & cd build
    cmake -DUSE_PYTHON==ON ..
    make
    

    This will pull the pybind11 module required for the python bindings, and compile both the C++ code, and the python bindings which are used in EVolve to conect to FastChem.

    Note: FastChem is an external C++ module, used to compute atmospheric equilibrium chemistry. Therefore, to run on Windows, I recommend using WSL (Windows Subsystem for Linux) to make the process of compiling the C code easier. If you encounter installation issues relating to the cmake version, I found the accepted answer here to work for me. A list of the suggested terminal commands can also be found at the bottom of this README file.

  3. Install dependencies using either Pip install or Anaconda. Check requirements.txt for full details. If using Pip, install all dependencies from the main directory of EVolve using

    pip3 install -r requirements.txt
    

    Troubleshoot: The GMPY2 module requires several libraries (MPFR and MPC) which are not pre-loaded in some operating systems, particularly Windows. If the GMPY2 module does not install, or you have other install issues, try

    pip3 install wheel
    sudo apt install libgmp-dev libmpfr-dev libmpc-dev
    pip3 install -r requirements.txt
    

Running EVolve

EVolve can be run either with or without the FastChem equilibrium chemistry in the atmosphere. To run Evolve with FastChem, from the main directory of EVolve run

python evolve.py inputs.yaml --fastchem

The available tags are:

  • --fastchem ).This will use fastchem to run equilibrium chemistry in the atmosphere, producing more chemical species than the magma degassing model uses and enabling the atmospheric equilibrium temperature to be lower than magmatic.

  • --nocrust ).This option stops a crustal reservoir from being formed out of the degassed melt which has been erupted. Instead, the degassed melt and any volatiles remaining in it are re-incorporated back into the mantle. If this tag is NOT used, the mantle mass will gradually reduce as there is no mechanism for re-introducing the crustal material back into the mantle implemented here.

All the input models for EVolve, and the submodules EVo and FastChem are stored in the 'inputs' folder:

Filename Relevant module Properties
atm.yaml EVolve main Sets the pre-existing atmospheric chemistry and surface pressures + temperatures for the planet
mantle.yaml EVolve main Sets the initial planetary mantle/rocky body properties, including temperature, mass, fO2, the mantle volatile concentrations and the volcanic intrusive:extrusive ratio
planet.yaml EVolve main Sets generic planetary properties and important run settings, including planetary mass, radius, the amount of mantle melting occurring at each timestep and the size & number of timesteps the model will run.
chem.yaml EVo Contains the major oxide composition of the magma being input to EVo
env.yaml EVo Contains the majority of the run settings and volatile contents for the EVo run.
output.yaml EVo Stops any graphical input from EVo compared to it's default settings
config.input FastChem Sets the names and locations for input and output files for FastChem, and output settings
parameters.dat FastChem Location of elemental abundance files, and configuration parameters

Files highlighted in bold should be edited by the user; all others are optimied for EVolve and/or will be edited by the code as it is running. Explainations for each parameter setting in the EVolve files can be found at the bottom of this README file.

As EVolve runs, it creates and updates files in the outputs folder as follows:

Filename Data
atmosphere_out.csv Planetary surface pressure and atmospheric composition for tracked molecules in units of volume mixing ratios (actually mo fraction), calculated after each time step
mantle_out.csv Mantle volatile budget and fO2 after each timestep
volc_out.csv The final pressure iteration from the EVo output file in each timestep (storing melt volatile contents, atomic volatile contents, gas speciation in mol & wt fractions, etc)
fc_input.csv Generated if fastchem is selected: The input to FastChem after atmospheric mixing, and hydrogen escape if that is occuring, for each timestep.
fc_out.csv Generated if fastchem is selected: The results from FastChem after each timestep

Installation help for WSL

If you see an error saying that the installed version of cmake is too low to install FastChem, try these commands: Please note this is just a suggestion based on what worked for me, try these workarounds at your own risk!

sudo apt-get update
sudo apt-get install apt-transport-https ca-certificates gnupg software-properties-common wget

wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null | sudo apt-key add -

sudo apt-add-repository 'deb https://apt.kitware.com/ubuntu/ bionic main'
sudo apt-get update

sudo apt-get install cmake
Owner
Pip Liggins
3rd year PhD student studying Earth Sciences. I model volcanic degassing chemistry and its impact on planetary atmospheres.
Pip Liggins
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023
IDA file loader for UF2, created for the DEFCON 29 hardware badge

UF2 Loader for IDA The DEFCON 29 badge uses the UF2 bootloader, which conveniently allows you to dump and flash the firmware over USB as a mass storag

Kevin Colley 6 Feb 08, 2022
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

Gregory Duthé 4 Nov 24, 2022
PlenOctree Extraction algorithm

PlenOctrees_NeRF-SH This is an implementation of the Paper PlenOctrees for Real-time Rendering of Neural Radiance Fields. Not only the code provides t

49 Nov 05, 2022
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319 The samples analyzed here are described in this preprint, wh

Jesse Bloom 4 Feb 09, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

1.8k Dec 28, 2022
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022