Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Related tags

Deep Learninghifi-ecg
Overview

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations

Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Abstract: We propose using self-supervised discrete representations for the task of speech resynthesis. To generate disentangled representation, we separately extract low-bitrate representations for speech content, prosodic information, and speaker identity. This allows to synthesize speech in a controllable manner. We analyze various state-of-the-art, self-supervised representation learning methods and shed light on the advantages of each method while considering reconstruction quality and disentanglement properties. Specifically, we evaluate the F0 reconstruction, speaker identification performance (for both resynthesis and voice conversion), recordings' intelligibility, and overall quality using subjective human evaluation. Lastly, we demonstrate how these representations can be used for an ultra-lightweight speech codec. Using the obtained representations, we can get to a rate of 365 bits per second while providing better speech quality than the baseline methods.

Quick Links

Setup

Software

Requirements:

  • Python >= 3.6
  • PyTorch v1.8
  • Install dependencies
    git clone https://github.com/facebookresearch/speech-resynthesis.git
    cd speech-resynthesis
    pip install -r requirements.txt

Data

For LJSpeech:

  1. Download LJSpeech dataset from here into data/LJSpeech-1.1 folder.
  2. Downsample audio from 22.05 kHz to 16 kHz and pad
    bash
    python ./scripts/preprocess.py \
    --srcdir data/LJSpeech-1.1/wavs \
    --outdir data/LJSpeech-1.1/wavs_16khz \
    --pad
    

For VCTK:

  1. Download VCTK dataset from here into data/VCTK-Corpus folder.
  2. Downsample audio from 48 kHz to 16 kHz, trim trailing silences and pad
    python ./scripts/preprocess.py \
    --srcdir data/VCTK-Corpus/wav48_silence_trimmed \
    --outdir data/VCTK-Corpus/wav16_silence_trimmed_padded \
    --pad --postfix mic2.flac

Training

F0 Quantizer Model

To train F0 quantizer model, use the following command:

python -m torch.distributed.launch --nproc_per_node 8 train_f0_vq.py \
--checkpoint_path checkpoints/lj_f0_vq \
--config configs/LJSpeech/f0_vqvae.json

Set to the number of availalbe GPUs on your machine.

Resynthesis Model

To train a resynthesis model, use the following command:

python -m torch.distributed.launch --nproc_per_node <NUM_GPUS> train.py \
--checkpoint_path checkpoints/lj_vqvae \
--config configs/LJSpeech/vqvae256_lut.json

Supported Configurations

Currently, we support the following training schemes:

Dataset SSL Method Dictionary Size Config Path
LJSpeech HuBERT 100 configs/LJSpeech/hubert100_lut.json
LJSpeech CPC 100 configs/LJSpeech/cpc100_lut.json
LJSpeech VQVAE 256 configs/LJSpeech/vqvae256_lut.json
VCTK HuBERT 100 configs/VCTK/hubert100_lut.json
VCTK CPC 100 configs/VCTK/cpc100_lut.json
VCTK VQVAE 256 configs/VCTK/vqvae256_lut.json

Inference

To generate, simply run:

python inference.py \
--checkpoint_file checkpoints/vctk_cpc100 \
-n 10 \
--output_dir generations

To synthesize multiple speakers:

python inference.py \
--checkpoint_file checkpoints/vctk_cpc100 \
-n 10 \
--vc \
--input_code_file datasets/VCTK/cpc100/test.txt \
--output_dir generations_multispkr

You can also generate with codes from a different dataset:

python inference.py \
--checkpoint_file checkpoints/lj_cpc100 \
-n 10 \
--input_code_file datasets/VCTK/cpc100/test.txt \
--output_dir generations_vctk_to_lj

Preprocessing New Datasets

CPC / HuBERT Coding

To quantize new datasets with CPC or HuBERT follow the instructions described in the GSLM code.

To parse CPC output:

python scripts/parse_cpc_codes.py \
--manifest cpc_output_file \
--wav-root wav_root_dir \
--outdir parsed_cpc

To parse HuBERT output:

python parse_hubert_codes.py \
--codes hubert_output_file \
--manifest hubert_tsv_file \
--outdir parsed_hubert 

VQVAE Coding

First, you will need to download LibriLight dataset and move it to data/LibriLight.

For VQVAE, train a vqvae model using the following command:

python -m torch.distributed.launch --nproc_per_node <NUM_GPUS> train.py \
--checkpoint_path checkpoints/ll_vq \
--config configs/LibriLight/vqvae256.json

To extract VQVAE codes:

python infer_vqvae_codes.py \
--input_dir folder_with_wavs_to_code \
--output_dir vqvae_output_folder \
--checkpoint_file checkpoints/ll_vq

To parse VQVAE output:

 python parse_vqvae_codes.py \
 --manifest vqvae_output_file \
 --outdir parsed_vqvae

License

You may find out more about the license here.

Citation

@inproceedings{polyak21_interspeech,
  author={Adam Polyak and Yossi Adi and Jade Copet and 
          Eugene Kharitonov and Kushal Lakhotia and 
          Wei-Ning Hsu and Abdelrahman Mohamed and Emmanuel Dupoux},
  title={{Speech Resynthesis from Discrete Disentangled Self-Supervised Representations}},
  year=2021,
  booktitle={Proc. Interspeech 2021},
}

Acknowledgements

This implementation uses code from the following repos: HiFi-GAN and Jukebox, as described in our code.

PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.

PairRE Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. This implementation of PairRE for Open Graph Benchmak datasets (

Alipay 65 Dec 19, 2022
Automatic 2D-to-3D Video Conversion with CNNs

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs How To Run To run this code. Please install MXNet following the official document. Deep3D requir

Eric Junyuan Xie 1.2k Dec 30, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023
Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

FGR This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(I

Yi Wei 31 Dec 08, 2022
DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio

Zhenliang He 408 Nov 30, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Tensorflow Tutorials using Jupyter Notebook

Tensorflow Tutorials using Jupyter Notebook TensorFlow tutorials written in Python (of course) with Jupyter Notebook. Tried to explain as kindly as po

Sungjoon 2.6k Dec 22, 2022
Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

MLP Mixer Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo. Author: Github: bangoc123 Emai

Ngoc Nguyen Ba 86 Dec 10, 2022
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
Matthew Colbrook 1 Apr 08, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022