A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

Related tags

Deep LearningIconQA
Overview

IconQA

License: CC BY-SA 4.0

About

IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and comprehensive cognitive reasoning in real-world problems.

iconqa examples

There are three different sub-tasks in IconQA:

  • 57,672 image choice MC questions
  • 31,578 text chioce MC questions
  • 18,189 fill-in-the-blank questions
Sub-Tasks Train Validation Test Total
Multi-image-choice 34,603 11,535 11,535 57,672
Multi-text-choice 18,946 6,316 6,316 31,578
Filling-in-the-blank 10,913 3,638 3,638 18,189

In addition to IconQA, we also present Icon645, a large-scale dataset of icons that cover a wide range of objects:

  • 645,687 colored icons
  • 377 different icon classes

icon_examples

For more details, you can find our website here and our paper here.

Download

Our dataset is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Please read the license before you use, change, or share our dataset.

You can download IconQA here. Or run the commands by:

cd data
wget https://iconqa2021.s3.us-west-1.amazonaws.com/iconqa.zip
unzip iconqa.zip

You can download Icon645 here. Or run the commands by:

cd data
wget https://iconqa2021.s3.us-west-1.amazonaws.com/icon645.zip
unzip icon645.zip

File structures for the IconQA dataset:

IconQA
|   LICENSE.md
|   metadata.json
|   pid2skills.json
|   pid_splits.json
|   problems.json
|   skills.json
└───test
│   │
│   └───choose_img
│   |   |
│   |   └───question_id
│   |   |   |   image.png
|   |   |   |   data.json
|   |   |   |   choice_0.png
|   |   |   |   choice_1.png
|   |   |   |   ...
|   |   |
|   |   └───question_id
|   |   |   ...
|   |   
|   └───choose_txt
|   |   |  
|   |   └───question_id
|   |   |   |   image.png
|   |   |   |   data.json
|   |   | 
|   |   └───question_id
|   |   |   ...
|   |
|   └───fill_in_blank
|       |  
|       └───question_id
|       |   |   image.png
|       |   |   data.json
|       | 
|       └───question_id
|       |   ...
|   
└───train
|   |   same as test
|   
└───val
    |   same as test

File structures for the Icon645 dataset:

Icon645
|   LICENCE.md
|   metadata.json
└───colored_icons_final
    |
    └───acorn
    |   |   image_id1.png
    |   |   image_id2.png
    |   |   ...
    |   
    └───airplane
    |   |   image_id3.png
    |   |   ...
    |      
    |   ...

Citation

If the paper or the dataset inspires you, please cite us:

@inproceedings{lu2021iconqa,
  title = {IconQA: A New Benchmark for Abstract Diagram Understanding and Visual Language Reasoning},
  author = {Lu, Pan and Qiu, Liang and Chen, Jiaqi and Xia, Tony and Zhao, Yizhou and Zhang, Wei and Yu, Zhou and Liang, Xiaodan and Zhu, Song-Chun},
  booktitle = {Submitted to the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks},
  year = {2021}
}

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

Owner
Pan Lu
Computer Science
Pan Lu
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
Pytorch implementation of Cut-Thumbnail in the paper Cut-Thumbnail:A Novel Data Augmentation for Convolutional Neural Network.

Cut-Thumbnail (Accepted at ACM MULTIMEDIA 2021) Tianshu Xie, Xuan Cheng, Xiaomin Wang, Minghui Liu, Jiali Deng, Tao Zhou, Ming Liu This is the officia

3 Apr 12, 2022
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
Enigma-Plus - Python based Enigma machine simulator with some extra features

Enigma-Plus Python based Enigma machine simulator with some extra features Examp

1 Jan 05, 2022
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
Tensorflow 2 implementation of our high quality frame interpolation neural network

FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in

Google Research 1.6k Dec 28, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Dist2Dec: A Simplicial Neural Network for Homology Localization

Dist2Dec: A Simplicial Neural Network for Homology Localization

Alexandros Keros 6 Jun 12, 2022
Multi-Task Deep Neural Networks for Natural Language Understanding

New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code

Xiaodong 2.1k Dec 30, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

0 Apr 02, 2021
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

Hao Mai 15 Nov 04, 2022
Implementation of Google Brain's WaveGrad high-fidelity vocoder

WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio

Ivan Vovk 363 Dec 27, 2022
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023