[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

Related tags

Deep Learningwseg
Overview

wseg

Overview

The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast.

[arXiv]

Though image-level weakly supervised semantic segmentation (WSSS) has achieved great progress with Class Activation Maps (CAMs) as the cornerstone, the large supervision gap between classification and segmentation still hampers the model to generate more complete and precise pseudo masks for segmentation. In this study, we propose weakly-supervised pixel-to-prototype contrast that can provide pixel-level supervisory signals to narrow the gap. Guided by two intuitive priors, our method is executed across different views and within per single view of an image, aiming to impose cross-view feature semantic consistency regularization and facilitate intra(inter)-class compactness(dispersion) of the feature space. Our method can be seamlessly incorporated into existing WSSS models without any changes to the base networks and does not incur any extra inference burden. Extensive experiments manifest that our method consistently improves two strong baselines by large margins, demonstrating the effectiveness.

图片

Prerequisites

Preparation

  1. Clone this repository.
  2. Data preparation. Download PASCAL VOC 2012 devkit following instructions in http://host.robots.ox.ac.uk/pascal/VOC/voc2012/#devkit. It is suggested to make a soft link toward downloaded dataset. Then download the annotation of VOC 2012 trainaug set (containing 10582 images) from https://www.dropbox.com/s/oeu149j8qtbs1x0/SegmentationClassAug.zip?dl=0 and place them all as VOC2012/SegmentationClassAug/xxxxxx.png. Download the image-level labels cls_label.npy from https://github.com/YudeWang/SEAM/tree/master/voc12/cls_label.npy and place it into voc12/, or you can generate it by yourself.
  3. Download ImageNet pretrained backbones. We use ResNet-38 for initial seeds generation and ResNet-101 for segmentation training. Download pretrained ResNet-38 from https://drive.google.com/file/d/15F13LEL5aO45JU-j45PYjzv5KW5bn_Pn/view. The ResNet-101 can be downloaded from https://download.pytorch.org/models/resnet101-5d3b4d8f.pth.

Model Zoo

Download the trained models and category performance below.

baseline model train(mIoU) val(mIoU) test (mIoU) checkpoint category performance
SEAM contrast 61.5 58.4 - [download]
affinitynet 69.2 - [download]
deeplabv1 - 67.7* 67.4* [download] [link]
EPS contrast 70.5 - - [download]
deeplabv1 - 72.3* 73.5* [download] [link]
deeplabv2 - 72.6* 73.6* [download] [link]

* indicates using densecrf.

The training results including initial seeds, intermediate products and pseudo masks can be found here.

Usage

Step1: Initial Seed Generation with Contrastive Learning.

  1. Contrast train.

    python contrast_train.py  \
      --weights $pretrained_model \
      --voc12_root VOC2012 \
      --session_name $your_session_name \
      --batch_size $bs
    
  2. Contrast inference.

    Download the pretrained model from https://1drv.ms/u/s!AgGL9MGcRHv0mQSKoJ6CDU0cMjd2?e=dFlHgN or train from scratch, set --weights and then run:

    python contrast_infer.py \
      --weights $contrast_weight \ 
      --infer_list $[voc12/val.txt | voc12/train.txt | voc12/train_aug.txt] \
      --out_cam $your_cam_npy_dir \
      --out_cam_pred $your_cam_png_dir \
      --out_crf $your_crf_png_dir
    
  3. Evaluation.

    Following SEAM, we recommend you to use --curve to select an optimial background threshold.

    python eval.py \
      --list VOC2012/ImageSets/Segmentation/$[val.txt | train.txt] \
      --predict_dir $your_result_dir \
      --gt_dir VOC2012/SegmentationClass \
      --comment $your_comments \
      --type $[npy | png] \
      --curve True
    

Step2: Refine with AffinityNet.

  1. Preparation.

    Prepare the files (la_crf_dir and ha_crf_dir) needed for training AffinityNet. You can also use our processed crf outputs with alpha=4/8 from here.

    python aff_prepare.py \
      --voc12_root VOC2012 \
      --cam_dir $your_cam_npy_dir \
      --out_crf $your_crf_alpha_dir 
    
  2. AffinityNet train.

    python aff_train.py \
      --weights $pretrained_model \
      --voc12_root VOC2012 \
      --la_crf_dir $your_crf_dir_4.0 \
      --ha_crf_dir $your_crf_dir_8.0 \
      --session_name $your_session_name
    
  3. Random walk propagation & Evaluation.

    Use the trained AffinityNet to conduct RandomWalk for refining the CAMs from Step1. Trained model can be found in Model Zoo (https://1drv.ms/u/s!AgGL9MGcRHv0mQXi0SSkbUc2sl8o?e=AY7AzX).

    python aff_infer.py \
      --weights $aff_weights \
      --voc12_root VOC2012 \
      --infer_list $[voc12/val.txt | voc12/train.txt] \
      --cam_dir $your_cam_dir \
      --out_rw $your_rw_dir
    
  4. Pseudo mask generation. Generate the pseudo masks for training the DeepLab Model. Dense CRF is used in this step.

    python aff_infer.py \
      --weights $aff_weights \
      --infer_list voc12/trainaug.txt \
      --cam_dir $your_cam_dir \
      --voc12_root VOC2012 \
      --out_rw $your_rw_dir
    

Step3: Segmentation training with DeepLab

  1. Training.

    we use the segmentation repo from https://github.com/YudeWang/semantic-segmentation-codebase. Training and inference codes are available in segmentation/experiment/. Set DATA_PSEUDO_GT: $your_pseudo_label_path in config.py. Then run:

    python train.py
    
  2. Inference.

    Check test configration in config.py (ckpt path, trained model: https://1drv.ms/u/s!AgGL9MGcRHv0mQgpb3QawPCsKPe9?e=4vly0H) and val/test set selection in test.py. Then run:

    python test.py
    

    For test set evaluation, you need to download test set images and submit the segmentation results to the official voc server.

For integrating our approach into the EPS model, you can change branch to EPS via:

git checkout eps

Then conduct train or inference following instructions above. Segmentation training follows the same repo in segmentation. Trained models & processed files can be download in Model Zoo.

Acknowledgements

We sincerely thank Yude Wang for his great work SEAM in CVPR'20. We borrow codes heavly from his repositories SEAM and Segmentation. We also thank Seungho Lee for his EPS and jiwoon-ahn for his AffinityNet and IRN. Without them, we could not finish this work.

Citation

@inproceedings{du2021weakly,
  title={Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast},
  author={Du, Ye and Fu, Zehua and Liu, Qingjie and Wang, Yunhong},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2022}
}
Owner
Ye Du
Ye Du
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
Txt2Xml tool will help you convert from txt COCO format to VOC xml format in Object Detection Problem.

TXT 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Txt2Xml too

Nguyễn Trường Lâu 4 Nov 24, 2022
FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022
Vector Quantized Diffusion Model for Text-to-Image Synthesis

Vector Quantized Diffusion Model for Text-to-Image Synthesis Due to company policy, I have to set microsoft/VQ-Diffusion to private for now, so I prov

Shuyang Gu 294 Jan 05, 2023
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
RLHive: a framework designed to facilitate research in reinforcement learning.

RLHive is a framework designed to facilitate research in reinforcement learning. It provides the components necessary to run a full RL experiment, for both single agent and multi agent environments.

88 Jan 05, 2023
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
Analyzes your GitHub Profile and presents you with a report on how likely you are to become the next MLH Fellow!

Fellowship Prediction GitHub Profile Comparative Analysis Tool Built with BentoML Table of Contents: Features Disclaimer Technologies Used Contributin

Damir Temir 51 Dec 29, 2022
ServiceX Transformer that converts flat ROOT ntuples into columnwise data

ServiceX_Uproot_Transformer ServiceX Transformer that converts flat ROOT ntuples into columnwise data Usage You can invoke the transformer from the co

Vis 0 Jan 20, 2022
Semi-Supervised Learning with Ladder Networks in Keras. Get 98% test accuracy on MNIST with just 100 labeled examples !

Semi-Supervised Learning with Ladder Networks in Keras This is an implementation of Ladder Network in Keras. Ladder network is a model for semi-superv

Divam Gupta 101 Sep 07, 2022
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022