Explainability for Vision Transformers (in PyTorch)

Overview

Explainability for Vision Transformers (in PyTorch)

This repository implements methods for explainability in Vision Transformers.

See also https://jacobgil.github.io/deeplearning/vision-transformer-explainability

Currently implemented:

  • Attention Rollout.

  • Gradient Attention Rollout for class specific explainability. This is our attempt to further build upon and improve Attention Rollout.

  • TBD Attention flow is work in progress.

Includes some tweaks and tricks to get it working:

  • Different Attention Head fusion methods,
  • Removing the lowest attentions.

Usage

  • From code
from vit_grad_rollout import VITAttentionGradRollout

model = torch.hub.load('facebookresearch/deit:main', 
'deit_tiny_patch16_224', pretrained=True)
grad_rollout = VITAttentionGradRollout(model, discard_ratio=0.9, head_fusion='max')
mask = grad_rollout(input_tensor, category_index=243)
  • From the command line:
python vit_explain.py --image_path  --head_fusion  --discard_ratio  --category_index 

If category_index isn't specified, Attention Rollout will be used, otherwise Gradient Attention Rollout will be used.

Notice that by default, this uses the 'Tiny' model from Training data-efficient image transformers & distillation through attention hosted on torch hub.

Where did the Transformer pay attention to in this image?

Image Vanilla Attention Rollout With discard_ratio+max fusion

Gradient Attention Rollout for class specific explainability

The Attention that flows in the transformer passes along information belonging to different classes. Gradient roll out lets us see what locations the network paid attention too, but it tells us nothing about if it ended up using those locations for the final classification.

We can multiply the attention with the gradient of the target class output, and take the average among the attention heads (while masking out negative attentions) to keep only attention that contributes to the target category (or categories).

Where does the Transformer see a Dog (category 243), and a Cat (category 282)?

Where does the Transformer see a Musket dog (category 161) and a Parrot (category 87):

Tricks and Tweaks to get this working

Filtering the lowest attentions in every layer

--discard_ratio

Removes noise by keeping the strongest attentions.

Results for dIfferent values:

Different Attention Head Fusions

The Attention Rollout method suggests taking the average attention accross the attention heads,

but emperically it looks like taking the Minimum value, Or the Maximum value combined with --discard_ratio, works better.

--head_fusion

Image Mean Fusion Min Fusion

References

Requirements

pip install timm

Owner
Jacob Gildenblat
Machine learning / Computer Vision developer.
Jacob Gildenblat
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
CVPR 2022 "Online Convolutional Re-parameterization"

OREPA: Online Convolutional Re-parameterization This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re

Mu Hu 121 Dec 21, 2022
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
GrailQA: Strongly Generalizable Question Answering

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It ca

OSU DKI Lab 76 Dec 21, 2022
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

Daniele Grattarola 2.2k Jan 08, 2023
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
Real life contra a deep learning project built using mediapipe and openc

real-life-contra Description A python script that translates the body movement into in game control. Welcome to all new real life contra a deep learni

Programminghut 7 Jan 26, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023