Shared Attention for Multi-label Zero-shot Learning

Overview

Shared Attention for Multi-label Zero-shot Learning

Overview

This repository contains the implementation of Shared Attention for Multi-label Zero-shot Learning.

In this work, we address zero-shot multi-label learning for recognition all (un)seen labels using a shared multi-attention method with a novel training mechanism.

Image


Prerequisites

  • Python 3.x
  • TensorFlow 1.8.0
  • sklearn
  • matplotlib
  • skimage
  • scipy==1.4.1

Data Preparation

Please download and extract the vgg_19 model (http://download.tensorflow.org/models/vgg_19_2016_08_28.tar.gz) in ./model/vgg_19. Make sure the extract model is named vgg_19.ckpt

NUS-WIDE

  1. Please download NUS-WIDE images and meta-data into ./data/NUS-WIDE folder according to the instructions within the folders ./data/NUS-WIDE and ./data/NUS-WIDE/Flickr.

  2. To extract features into TensorFlow storage format, please run:

python ./extract_data/extract_full_NUS_WIDE_images_VGG_feature_2_TFRecord.py			#`data_set` == `Train`: create NUS_WIDE_Train_full_feature_ZLIB.tfrecords
python ./extract_data/extract_full_NUS_WIDE_images_VGG_feature_2_TFRecord.py			#`data_set` == `Test`: create NUS_WIDE_Test_full_feature_ZLIB.tfrecords

Please change the data_set variable in the script to Train and Test to extract NUS_WIDE_Train_full_feature_ZLIB.tfrecords and NUS_WIDE_Test_full_feature_ZLIB.tfrecords.

Open Images

  1. Please download Open Images urls and annotation into ./data/OpenImages folder according to the instructions within the folders ./data/OpenImages/2017_11 and ./data/OpenImages/2018_04.

  2. To crawl images from the web, please run the script:

python ./download_imgs/asyn_image_downloader.py 					#`data_set` == `train`: download images into `./image_data/train/`
python ./download_imgs/asyn_image_downloader.py 					#`data_set` == `validation`: download images into `./image_data/validation/`
python ./download_imgs/asyn_image_downloader.py 					#`data_set` == `test`: download images into `./image_data/test/`

Please change the data_set variable in the script to train, validation, and test to download different data splits.

  1. To extract features into TensorFlow storage format, please run:
python ./extract_data/extract_images_VGG_feature_2_TFRecord.py						#`data_set` == `train`: create train_feature_2018_04_ZLIB.tfrecords
python ./extract_data/extract_images_VGG_feature_2_TFRecord.py						#`data_set` == `validation`: create validation_feature_2018_04_ZLIB.tfrecords
python ./extract_data/extract_test_seen_unseen_images_VGG_feature_2_TFRecord.py			        #`data_set` == `test`:  create OI_seen_unseen_test_feature_2018_04_ZLIB.tfrecords

Please change the data_set variable in the extract_images_VGG_feature_2_TFRecord.py script to train, and validation to extract features from different data splits.


Training and Evaluation

NUS-WIDE

  1. To train and evaluate zero-shot learning model on full NUS-WIDE dataset, please run:
python ./zeroshot_experiments/NUS_WIDE_zs_rank_Visual_Word_Attention.py

Open Images

  1. To train our framework, please run:
python ./multilabel_experiments/OpenImage_rank_Visual_Word_Attention.py				#create a model checkpoint in `./results`
  1. To evaluate zero-shot performance, please run:
python ./zeroshot_experiments/OpenImage_evaluate_top_multi_label.py					#set `evaluation_path` to the model checkpoint created in step 1) above

Please set the evaluation_path variable to the model checkpoint created in step 1) above


Model Checkpoint

We also include the checkpoint of the zero-shot model on NUS-WIDE for fast evaluation (./results/release_zs_NUS_WIDE_log_GPU_7_1587185916d2570488/)


Citation

If this code is helpful for your research, we would appreciate if you cite the work:

@article{Huynh-LESA:CVPR20,
  author = {D.~Huynh and E.~Elhamifar},
  title = {A Shared Multi-Attention Framework for Multi-Label Zero-Shot Learning},
  journal = {{IEEE} Conference on Computer Vision and Pattern Recognition},
  year = {2020}}
Owner
dathuynh
Ph.D. candidate at Northeastern University
dathuynh
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction.

TalkNet 2 [WIP] TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Predictio

Rishikesh (ऋषिकेश) 69 Dec 17, 2022
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

38 Aug 31, 2022
Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune

16 Aug 24, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n

Ashutosh Hathidara 60 Dec 10, 2022
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023