Shared Attention for Multi-label Zero-shot Learning

Overview

Shared Attention for Multi-label Zero-shot Learning

Overview

This repository contains the implementation of Shared Attention for Multi-label Zero-shot Learning.

In this work, we address zero-shot multi-label learning for recognition all (un)seen labels using a shared multi-attention method with a novel training mechanism.

Image


Prerequisites

  • Python 3.x
  • TensorFlow 1.8.0
  • sklearn
  • matplotlib
  • skimage
  • scipy==1.4.1

Data Preparation

Please download and extract the vgg_19 model (http://download.tensorflow.org/models/vgg_19_2016_08_28.tar.gz) in ./model/vgg_19. Make sure the extract model is named vgg_19.ckpt

NUS-WIDE

  1. Please download NUS-WIDE images and meta-data into ./data/NUS-WIDE folder according to the instructions within the folders ./data/NUS-WIDE and ./data/NUS-WIDE/Flickr.

  2. To extract features into TensorFlow storage format, please run:

python ./extract_data/extract_full_NUS_WIDE_images_VGG_feature_2_TFRecord.py			#`data_set` == `Train`: create NUS_WIDE_Train_full_feature_ZLIB.tfrecords
python ./extract_data/extract_full_NUS_WIDE_images_VGG_feature_2_TFRecord.py			#`data_set` == `Test`: create NUS_WIDE_Test_full_feature_ZLIB.tfrecords

Please change the data_set variable in the script to Train and Test to extract NUS_WIDE_Train_full_feature_ZLIB.tfrecords and NUS_WIDE_Test_full_feature_ZLIB.tfrecords.

Open Images

  1. Please download Open Images urls and annotation into ./data/OpenImages folder according to the instructions within the folders ./data/OpenImages/2017_11 and ./data/OpenImages/2018_04.

  2. To crawl images from the web, please run the script:

python ./download_imgs/asyn_image_downloader.py 					#`data_set` == `train`: download images into `./image_data/train/`
python ./download_imgs/asyn_image_downloader.py 					#`data_set` == `validation`: download images into `./image_data/validation/`
python ./download_imgs/asyn_image_downloader.py 					#`data_set` == `test`: download images into `./image_data/test/`

Please change the data_set variable in the script to train, validation, and test to download different data splits.

  1. To extract features into TensorFlow storage format, please run:
python ./extract_data/extract_images_VGG_feature_2_TFRecord.py						#`data_set` == `train`: create train_feature_2018_04_ZLIB.tfrecords
python ./extract_data/extract_images_VGG_feature_2_TFRecord.py						#`data_set` == `validation`: create validation_feature_2018_04_ZLIB.tfrecords
python ./extract_data/extract_test_seen_unseen_images_VGG_feature_2_TFRecord.py			        #`data_set` == `test`:  create OI_seen_unseen_test_feature_2018_04_ZLIB.tfrecords

Please change the data_set variable in the extract_images_VGG_feature_2_TFRecord.py script to train, and validation to extract features from different data splits.


Training and Evaluation

NUS-WIDE

  1. To train and evaluate zero-shot learning model on full NUS-WIDE dataset, please run:
python ./zeroshot_experiments/NUS_WIDE_zs_rank_Visual_Word_Attention.py

Open Images

  1. To train our framework, please run:
python ./multilabel_experiments/OpenImage_rank_Visual_Word_Attention.py				#create a model checkpoint in `./results`
  1. To evaluate zero-shot performance, please run:
python ./zeroshot_experiments/OpenImage_evaluate_top_multi_label.py					#set `evaluation_path` to the model checkpoint created in step 1) above

Please set the evaluation_path variable to the model checkpoint created in step 1) above


Model Checkpoint

We also include the checkpoint of the zero-shot model on NUS-WIDE for fast evaluation (./results/release_zs_NUS_WIDE_log_GPU_7_1587185916d2570488/)


Citation

If this code is helpful for your research, we would appreciate if you cite the work:

@article{Huynh-LESA:CVPR20,
  author = {D.~Huynh and E.~Elhamifar},
  title = {A Shared Multi-Attention Framework for Multi-Label Zero-Shot Learning},
  journal = {{IEEE} Conference on Computer Vision and Pattern Recognition},
  year = {2020}}
Owner
dathuynh
Ph.D. candidate at Northeastern University
dathuynh
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

Zongdai 107 Dec 20, 2022
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
Robocop is your personal mini voice assistant made using Python.

Robocop-VoiceAssistant To use this project, you should have python installed in your system. If you don't have python installed, install it beforehand

Sohil Khanduja 3 Feb 26, 2022
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.

META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu

Bosch Research 7 Dec 09, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
Autotype on websites that have copy-paste disabled like Moodle, HackerEarth contest etc.

Autotype A quick and small python script that helps you autotype on websites that have copy paste disabled like Moodle, HackerEarth contests etc as it

Tushar 32 Nov 03, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022