This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Overview

Learning-to-See-in-the-Dark

This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun.

Project Website
Paper

teaser

This code includes the default model for training and testing on the See-in-the-Dark (SID) dataset.

Demo Video

https://youtu.be/qWKUFK7MWvg

Setup

Requirement

Required python (version 2.7) libraries: Tensorflow (>=1.1) + Scipy + Numpy + Rawpy.

Tested in Ubuntu + Intel i7 CPU + Nvidia Titan X (Pascal) with Cuda (>=8.0) and CuDNN (>=5.0). CPU mode should also work with minor changes but not tested.

Dataset

Update Aug, 2018: We found some misalignment with the ground-truth for image 10034, 10045, 10172. Please remove those images for quantitative results, but they still can be used for qualitative evaluations.

You can download it directly from Google drive for the Sony (25 GB) and Fuji (52 GB) sets.

There is download limit by Google drive in a fixed period of time. If you cannot download because of this, try these links: Sony (25 GB) and Fuji (52 GB).

New: we provide file parts in Baidu Drive now. After you download all the parts, you can combine them together by running: "cat SonyPart* > Sony.zip" and "cat FujiPart* > Fuji.zip".

The file lists are provided. In each row, there are a short-exposed image path, the corresponding long-exposed image path, camera ISO and F number. Note that multiple short-exposed images may correspond to the same long-exposed image.

The file name contains the image information. For example, in "10019_00_0.033s.RAF", the first digit "1" means it is from the test set ("0" for training set and "2" for validation set); "0019" is the image ID; the following "00" is the number in the sequence/burst; "0.033s" is the exposure time 1/30 seconds.

Testing

  1. Clone this repository.
  2. Download the pretrained models by running
python download_models.py
  1. Run "python test_Sony.py". This will generate results on the Sony test set.
  2. Run "python test_Fuji.py". This will generate results on the Fuji test set.

By default, the code takes the data in the "./dataset/Sony/" folder and "./dataset/Fuji/". If you save the dataset in other folders, please change the "input_dir" and "gt_dir" at the beginning of the code.

Training new models

  1. To train the Sony model, run "python train_Sony.py". The result and model will be save in "result_Sony" folder by default.
  2. To train the Fuji model, run "python train_Fuji.py". The result and model will be save in "result_Fuji" folder by default.

By default, the code takes the data in the "./dataset/Sony/" folder and "./dataset/Fuji/". If you save the dataset in other folders, please change the "input_dir" and "gt_dir" at the beginning of the code.

Loading the raw data and proccesing by Rawpy takes significant more time than the backpropagation. By default, the code will load all the groundtruth data processed by Rawpy into memory without 8-bit or 16-bit quantization. This requires at least 64 GB RAM for training the Sony model and 128 GB RAM for the Fuji model. If you need to train it on a machine with less RAM, you may need to revise the code and use the groundtruth data on the disk. We provide the 16-bit groundtruth images processed by Rawpy: Sony (12 GB) and Fuji (22 GB).

Citation

If you use our code and dataset for research, please cite our paper:

Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun, "Learning to See in the Dark", in CVPR, 2018.

License

MIT License.

FAQ

  1. Can I test my own data using the provided model?

The proposed method is designed for sensor raw data. The pretrained model probably not work for data from another camera sensor. We do not have support for other camera data. It also does not work for images after camera ISP, i.e., the JPG or PNG data.

  1. Will this be in any product?

This is a research project and a prototype to prove a concept.

  1. How can I train the model using my own raw data?

Generally, you just need to subtract the right black level and pack the data in the same way of Sony/Fuji data. If using rawpy, you need to read the black level instead of using 512 in the provided code. The data range may also differ if it is not 14 bits. You need to normalize it to [0,1] for the network input.

  1. Why the results are all black?

It is often because the pre-trained model not downloaded properly. After downloading, you should get 4 checkpoint related files for the model.

Questions

If you have additional questions after reading the FAQ, please email to [email protected].

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
Bling's Object detection tool

BriVL for Building Applications This repo is used for illustrating how to build applications by using BriVL model. This repo is re-implemented from fo

chuhaojin 47 Nov 01, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

International Business Machines 72 Jan 06, 2023
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 04, 2023
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

Autonomio 1.6k Dec 15, 2022
Count GitHub Stars ⭐

Count GitHub Stars per Day ⭐ Track GitHub stars per day over a date range to measure the open-source popularity of different repositories. Requirement

Ultralytics 20 Nov 20, 2022
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022