TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

Overview

TensorFlow Examples

This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and source codes with explanation, for both TF v1 & v2.

It is suitable for beginners who want to find clear and concise examples about TensorFlow. Besides the traditional 'raw' TensorFlow implementations, you can also find the latest TensorFlow API practices (such as layers, estimator, dataset, ...).

Update (05/16/2020): Moving all default examples to TF2. For TF v1 examples: check here.

Tutorial index

0 - Prerequisite

1 - Introduction

  • Hello World (notebook). Very simple example to learn how to print "hello world" using TensorFlow 2.0+.
  • Basic Operations (notebook). A simple example that cover TensorFlow 2.0+ basic operations.

2 - Basic Models

  • Linear Regression (notebook). Implement a Linear Regression with TensorFlow 2.0+.
  • Logistic Regression (notebook). Implement a Logistic Regression with TensorFlow 2.0+.
  • Word2Vec (Word Embedding) (notebook). Build a Word Embedding Model (Word2Vec) from Wikipedia data, with TensorFlow 2.0+.
  • GBDT (Gradient Boosted Decision Trees) (notebooks). Implement a Gradient Boosted Decision Trees with TensorFlow 2.0+ to predict house value using Boston Housing dataset.

3 - Neural Networks

Supervised
  • Simple Neural Network (notebook). Use TensorFlow 2.0 'layers' and 'model' API to build a simple neural network to classify MNIST digits dataset.
  • Simple Neural Network (low-level) (notebook). Raw implementation of a simple neural network to classify MNIST digits dataset.
  • Convolutional Neural Network (notebook). Use TensorFlow 2.0+ 'layers' and 'model' API to build a convolutional neural network to classify MNIST digits dataset.
  • Convolutional Neural Network (low-level) (notebook). Raw implementation of a convolutional neural network to classify MNIST digits dataset.
  • Recurrent Neural Network (LSTM) (notebook). Build a recurrent neural network (LSTM) to classify MNIST digits dataset, using TensorFlow 2.0 'layers' and 'model' API.
  • Bi-directional Recurrent Neural Network (LSTM) (notebook). Build a bi-directional recurrent neural network (LSTM) to classify MNIST digits dataset, using TensorFlow 2.0+ 'layers' and 'model' API.
  • Dynamic Recurrent Neural Network (LSTM) (notebook). Build a recurrent neural network (LSTM) that performs dynamic calculation to classify sequences of variable length, using TensorFlow 2.0+ 'layers' and 'model' API.
Unsupervised
  • Auto-Encoder (notebook). Build an auto-encoder to encode an image to a lower dimension and re-construct it.
  • DCGAN (Deep Convolutional Generative Adversarial Networks) (notebook). Build a Deep Convolutional Generative Adversarial Network (DCGAN) to generate images from noise.

4 - Utilities

  • Save and Restore a model (notebook). Save and Restore a model with TensorFlow 2.0+.
  • Build Custom Layers & Modules (notebook). Learn how to build your own layers / modules and integrate them into TensorFlow 2.0+ Models.
  • Tensorboard (notebook). Track and visualize neural network computation graph, metrics, weights and more using TensorFlow 2.0+ tensorboard.

5 - Data Management

  • Load and Parse data (notebook). Build efficient data pipeline with TensorFlow 2.0 (Numpy arrays, Images, CSV files, custom data, ...).
  • Build and Load TFRecords (notebook). Convert data into TFRecords format, and load them with TensorFlow 2.0+.
  • Image Transformation (i.e. Image Augmentation) (notebook). Apply various image augmentation techniques with TensorFlow 2.0+, to generate distorted images for training.

6 - Hardware

  • Multi-GPU Training (notebook). Train a convolutional neural network with multiple GPUs on CIFAR-10 dataset.

TensorFlow v1

The tutorial index for TF v1 is available here: TensorFlow v1.15 Examples. Or see below for a list of the examples.

Dataset

Some examples require MNIST dataset for training and testing. Don't worry, this dataset will automatically be downloaded when running examples. MNIST is a database of handwritten digits, for a quick description of that dataset, you can check this notebook.

Official Website: http://yann.lecun.com/exdb/mnist/.

Installation

To download all the examples, simply clone this repository:

git clone https://github.com/aymericdamien/TensorFlow-Examples

To run them, you also need the latest version of TensorFlow. To install it:

pip install tensorflow

or (with GPU support):

pip install tensorflow_gpu

For more details about TensorFlow installation, you can check TensorFlow Installation Guide

TensorFlow v1 Examples - Index

The tutorial index for TF v1 is available here: TensorFlow v1.15 Examples.

0 - Prerequisite

1 - Introduction

  • Hello World (notebook) (code). Very simple example to learn how to print "hello world" using TensorFlow.
  • Basic Operations (notebook) (code). A simple example that cover TensorFlow basic operations.
  • TensorFlow Eager API basics (notebook) (code). Get started with TensorFlow's Eager API.

2 - Basic Models

  • Linear Regression (notebook) (code). Implement a Linear Regression with TensorFlow.
  • Linear Regression (eager api) (notebook) (code). Implement a Linear Regression using TensorFlow's Eager API.
  • Logistic Regression (notebook) (code). Implement a Logistic Regression with TensorFlow.
  • Logistic Regression (eager api) (notebook) (code). Implement a Logistic Regression using TensorFlow's Eager API.
  • Nearest Neighbor (notebook) (code). Implement Nearest Neighbor algorithm with TensorFlow.
  • K-Means (notebook) (code). Build a K-Means classifier with TensorFlow.
  • Random Forest (notebook) (code). Build a Random Forest classifier with TensorFlow.
  • Gradient Boosted Decision Tree (GBDT) (notebook) (code). Build a Gradient Boosted Decision Tree (GBDT) with TensorFlow.
  • Word2Vec (Word Embedding) (notebook) (code). Build a Word Embedding Model (Word2Vec) from Wikipedia data, with TensorFlow.

3 - Neural Networks

Supervised
  • Simple Neural Network (notebook) (code). Build a simple neural network (a.k.a Multi-layer Perceptron) to classify MNIST digits dataset. Raw TensorFlow implementation.
  • Simple Neural Network (tf.layers/estimator api) (notebook) (code). Use TensorFlow 'layers' and 'estimator' API to build a simple neural network (a.k.a Multi-layer Perceptron) to classify MNIST digits dataset.
  • Simple Neural Network (eager api) (notebook) (code). Use TensorFlow Eager API to build a simple neural network (a.k.a Multi-layer Perceptron) to classify MNIST digits dataset.
  • Convolutional Neural Network (notebook) (code). Build a convolutional neural network to classify MNIST digits dataset. Raw TensorFlow implementation.
  • Convolutional Neural Network (tf.layers/estimator api) (notebook) (code). Use TensorFlow 'layers' and 'estimator' API to build a convolutional neural network to classify MNIST digits dataset.
  • Recurrent Neural Network (LSTM) (notebook) (code). Build a recurrent neural network (LSTM) to classify MNIST digits dataset.
  • Bi-directional Recurrent Neural Network (LSTM) (notebook) (code). Build a bi-directional recurrent neural network (LSTM) to classify MNIST digits dataset.
  • Dynamic Recurrent Neural Network (LSTM) (notebook) (code). Build a recurrent neural network (LSTM) that performs dynamic calculation to classify sequences of different length.
Unsupervised
  • Auto-Encoder (notebook) (code). Build an auto-encoder to encode an image to a lower dimension and re-construct it.
  • Variational Auto-Encoder (notebook) (code). Build a variational auto-encoder (VAE), to encode and generate images from noise.
  • GAN (Generative Adversarial Networks) (notebook) (code). Build a Generative Adversarial Network (GAN) to generate images from noise.
  • DCGAN (Deep Convolutional Generative Adversarial Networks) (notebook) (code). Build a Deep Convolutional Generative Adversarial Network (DCGAN) to generate images from noise.

4 - Utilities

  • Save and Restore a model (notebook) (code). Save and Restore a model with TensorFlow.
  • Tensorboard - Graph and loss visualization (notebook) (code). Use Tensorboard to visualize the computation Graph and plot the loss.
  • Tensorboard - Advanced visualization (notebook) (code). Going deeper into Tensorboard; visualize the variables, gradients, and more...

5 - Data Management

  • Build an image dataset (notebook) (code). Build your own images dataset with TensorFlow data queues, from image folders or a dataset file.
  • TensorFlow Dataset API (notebook) (code). Introducing TensorFlow Dataset API for optimizing the input data pipeline.
  • Load and Parse data (notebook). Build efficient data pipeline (Numpy arrays, Images, CSV files, custom data, ...).
  • Build and Load TFRecords (notebook). Convert data into TFRecords format, and load them.
  • Image Transformation (i.e. Image Augmentation) (notebook). Apply various image augmentation techniques, to generate distorted images for training.

6 - Multi GPU

  • Basic Operations on multi-GPU (notebook) (code). A simple example to introduce multi-GPU in TensorFlow.
  • Train a Neural Network on multi-GPU (notebook) (code). A clear and simple TensorFlow implementation to train a convolutional neural network on multiple GPUs.

More Examples

The following examples are coming from TFLearn, a library that provides a simplified interface for TensorFlow. You can have a look, there are many examples and pre-built operations and layers.

Tutorials

  • TFLearn Quickstart. Learn the basics of TFLearn through a concrete machine learning task. Build and train a deep neural network classifier.

Examples

Owner
Aymeric Damien
Deep Learning Enthusiast. MLE @Snapchat. Past: Tsinghua University, EISTI
Aymeric Damien
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
Codes for "Template-free Prompt Tuning for Few-shot NER".

EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ

77 Dec 27, 2022
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022