This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Overview

Cross-Descriptor Visual Localization and Mapping

This repository contains the implementation of the following paper:

"Cross-Descriptor Visual Localization and Mapping".
M. Dusmanu, O. Miksik, J.L. Schönberger, and M. Pollefeys. ICCV 2021.

[Paper on arXiv]

Requirements

COLMAP

We use COLMAP for DoG keypoint extraction as well as localization and mapping. Please follow the installation instructions available on the official webpage. Before proceeding, we recommend setting an environmental variable to the COLMAP executable folder by running export COLMAP_PATH=path_to_colmap_executable_folder.

Python

The environment can be set up directly using conda:

conda env create -f env.yml
conda activate cross-descriptor-vis-loc-map

Training data

We provide a script for downloading the raw training data:

bash scripts/download_training_data.sh

Evaluation data

We provide a script for downloading the LFE dataset along with the GT used for evaluation as well as the Aachen Day-Night dataset:

bash scripts/download_evaluation_data.sh

Training

Data preprocessing

First step is extracting keypoints and descriptors on the training data downloaded above.

bash scripts/process_training_data.sh

Alternatively, you can directly download the processed training data by running:

bash scripts/download_processed_training_data.sh

Training

To run training with the default architecture and hyper-parameters, execute the following:

python train.py \
    --dataset_path data/train/colmap \
    --features brief sift-kornia hardnet sosnet

Pretrained models

We provide two pretrained models trained on descriptors extracted from COLMAP SIFT and OpenCV SIFT keypoints, respectively. These models can be downloaded by running:

bash scripts/download_checkpoints.sh

Evaluation

Demo Notebook

Click for details...

Local Feature Evaluation Benchmark

Click for details...

First step is extracting descriptors on all datasets:

bash scripts/process_LFE_data.sh

We provide examples below for running reconstruction on Madrid Metrpolis in each different evaluation scenario.

Reconstruction using a single descriptor (standard)

python local-feature-evaluation/reconstruction_pipeline_progressive.py \
    --dataset_path data/eval/LFE-release/Madrid_Metropolis \
    --colmap_path $COLMAP_PATH \
    --features sift-kornia \
    --exp_name sift-kornia-single

Reconstruction using the progressive approach (ours)

python local-feature-evaluation/reconstruction_pipeline_progressive.py \
    --dataset_path data/eval/LFE-release/Madrid_Metropolis \
    --colmap_path $COLMAP_PATH \
    --features brief sift-kornia hardnet sosnet \
    --exp_name progressive

Reconstruction using the joint embedding approach (ours)

python local-feature-evaluation/reconstruction_pipeline_embed.py \
    --dataset_path data/eval/LFE-release/Madrid_Metropolis \
    --colmap_path $COLMAP_PATH \
    --features brief sift-kornia hardnet sosnet \
    --exp_name embed

Reconstruction using a single descriptor on the associated split (real-world)

python local-feature-evaluation/reconstruction_pipeline_subset.py \
    --dataset_path data/eval/LFE-release/Madrid_Metropolis/ \
    --colmap_path $COLMAP_PATH \
    --features brief sift-kornia hardnet sosnet \
    --feature sift-kornia \
    --exp_name sift-kornia-subset

Evaluation of a reconstruction w.r.t. metric pseudo-ground-truth

python local-feature-evaluation/align_and_compare.py \
    --colmap_path $COLMAP_PATH \
    --reference_model_path data/eval/LFE-release/Madrid_Metropolis/sparse-reference/filtered-metric/ \
    --model_path data/eval/LFE-release/Madrid_Metropolis/sparse-sift-kornia-single/0/

Aachen Day-Night

Click for details...

BibTeX

If you use this code in your project, please cite the following paper:

@InProceedings{Dusmanu2021Cross,
    author = {Dusmanu, Mihai and Miksik, Ondrej and Sch\"onberger, Johannes L. and Pollefeys, Marc},
    title = {{Cross Descriptor Visual Localization and Mapping}},
    booktitle = {Proceedings of the International Conference on Computer Vision},
    year = {2021}
}
Owner
Mihai Dusmanu
PhD Student at ETH Zurich. Computer Vision + Deep Learning. Feature detection / description / matching, 3D reconstruction.
Mihai Dusmanu
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement

USAF - MIT Artificial Intelligence Accelerator 46 Dec 15, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
In Search of Probeable Generalization Measures

In Search of Probeable Generalization Measures Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Co

Mahdi S. Hosseini 6 Sep 11, 2022
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
A PyTorch implementation of unsupervised SimCSE

A PyTorch implementation of unsupervised SimCSE

99 Dec 23, 2022
MANO hand model porting for the GraspIt simulator

Learning Joint Reconstruction of Hands and Manipulated Objects - ManoGrasp Porting the MANO hand model to GraspIt! simulator Yana Hasson, Gül Varol, D

Lucas Wohlhart 10 Feb 08, 2022
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
Machine Learning Platform for Kubernetes

Reproduce, Automate, Scale your data science. Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applica

polyaxon 3.2k Dec 23, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022