Just Go with the Flow: Self-Supervised Scene Flow Estimation

Overview

Just Go with the Flow: Self-Supervised Scene Flow Estimation

Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation, CVPR 2020 (Oral).

Authors: Himangi Mittal, Brian Okorn, David Held

[arxiv] [Project Page]

Citation

If you find our work useful in your research, please cite:

@InProceedings{Mittal_2020_CVPR,
author = {Mittal, Himangi and Okorn, Brian and Held, David},
title = {Just Go With the Flow: Self-Supervised Scene Flow Estimation},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

Introduction

In this work, we propose a method of scene flow estimation using two self-supervised losses, based on nearest neighbors and cycle consistency. These self-supervised losses allow us to train our method on large unlabeled autonomous driving datasets; the resulting method matches current state-of-the-art supervised performance using no real world annotations and exceeds stateof-the-art performance when combining our self-supervised approach with supervised learning on a smaller labeled dataset.

For more details, please refer to our paper or project page.

Installation

Requirements

CUDA 9.0  
Tensorflow-gpu 1.9
Python 3.5
g++ 5.4.0

Steps

(a). Clone the repository.

git clone https://github.com/HimangiM/Self-Supervised-Scene-Flow-Estimation.git

(b). Install dependencies

Create a virtualenv
python3 -m venv sceneflowvenv
source sceneflowvenv/bin/activate
cd Self-Supervised-Scene-Flow-Estimation
pip install -r requirements.txt
Check for CUDA-9.0

(c). Compile the operations The TF operators are included under src/tf_ops. Check the CUDA compatability and edit the architecture accordingly in makefiles of each folder (tf_ops/sampling, tf_ops/grouping, tf_ops/3d_interpolation) The authors had used sm_61 as the architecture for CUDA-9.0. Finally, move into each directory and run make. Also, check for the path for CUDA-9.0 and edit the path in the makefiles of each folder. If this method throws error, then run bash make_tf_ops.sh sm_61.

Datasets

Download the kitti dataset from the Google Drive link. Each file is in the .npz format and has three keys: pos1, pos2 and gt, representing the first frame of point cloud, second frame of point cloud and the ground truth scene flow vectors for the points in the first frame. Create a folder with name data_preprocessing and download the kitti dataset in it. The dataset directory should look as follows:

Self-Supervised-Scene-Flow-Estimation
|--data_preprocessing
|  |--kitti_self_supervised_flow
|  |  |--train
|  |  |--test

The data preprocessing file to run the code on KITTI is present in the src folder: kitti_dataset_self_supervised_cycle.py. To create a dataloader for own dataset, refer to the script:

nuscenes_dataset_self_supervised_cycle.py

Training and Evaluation

To train on own dataset, refer to the scripts:

train_1nn_cycle_nuscenes.py
bash src/commands/command_train_cycle_nuscenes.sh

To evaluate on the KITTI dataset, execute the shell script:

bash src/commands/command_evaluate_kitti.sh

Link to the pretrained model.

Visualization

You can use Open3d to visualize the results. A sample script is given in visualization.py

Owner
Himangi Mittal
Research intern at CMU working in Vision, Robotics and Autonomous Driving
Himangi Mittal
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

274 Dec 06, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
[ICCV 2021] Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation

ADDS-DepthNet This is the official implementation of the paper Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation I

LIU_LINA 52 Nov 24, 2022
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
Code of the lileonardo team for the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021

Emotion and Theme Recognition in Music The repository contains code for the submission of the lileonardo team to the 2021 Emotion and Theme Recognitio

Vincent Bour 8 Aug 02, 2022
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Phil Wang 113 Jan 05, 2023
Discord bot-CTFD-Thread-Parser - Discord bot CTFD-Thread-Parser

Discord bot CTFD-Thread-Parser Description: This tools is used to create automat

15 Mar 22, 2022
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
QA-GNN: Question Answering using Language Models and Knowledge Graphs

QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L

Michihiro Yasunaga 434 Jan 04, 2023
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 06, 2022
A community run, 5-day PyTorch Deep Learning Bootcamp

Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv

Shlomo Kashani. 1.3k Sep 04, 2021
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

78 Dec 27, 2022