Just Go with the Flow: Self-Supervised Scene Flow Estimation

Overview

Just Go with the Flow: Self-Supervised Scene Flow Estimation

Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation, CVPR 2020 (Oral).

Authors: Himangi Mittal, Brian Okorn, David Held

[arxiv] [Project Page]

Citation

If you find our work useful in your research, please cite:

@InProceedings{Mittal_2020_CVPR,
author = {Mittal, Himangi and Okorn, Brian and Held, David},
title = {Just Go With the Flow: Self-Supervised Scene Flow Estimation},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

Introduction

In this work, we propose a method of scene flow estimation using two self-supervised losses, based on nearest neighbors and cycle consistency. These self-supervised losses allow us to train our method on large unlabeled autonomous driving datasets; the resulting method matches current state-of-the-art supervised performance using no real world annotations and exceeds stateof-the-art performance when combining our self-supervised approach with supervised learning on a smaller labeled dataset.

For more details, please refer to our paper or project page.

Installation

Requirements

CUDA 9.0  
Tensorflow-gpu 1.9
Python 3.5
g++ 5.4.0

Steps

(a). Clone the repository.

git clone https://github.com/HimangiM/Self-Supervised-Scene-Flow-Estimation.git

(b). Install dependencies

Create a virtualenv
python3 -m venv sceneflowvenv
source sceneflowvenv/bin/activate
cd Self-Supervised-Scene-Flow-Estimation
pip install -r requirements.txt
Check for CUDA-9.0

(c). Compile the operations The TF operators are included under src/tf_ops. Check the CUDA compatability and edit the architecture accordingly in makefiles of each folder (tf_ops/sampling, tf_ops/grouping, tf_ops/3d_interpolation) The authors had used sm_61 as the architecture for CUDA-9.0. Finally, move into each directory and run make. Also, check for the path for CUDA-9.0 and edit the path in the makefiles of each folder. If this method throws error, then run bash make_tf_ops.sh sm_61.

Datasets

Download the kitti dataset from the Google Drive link. Each file is in the .npz format and has three keys: pos1, pos2 and gt, representing the first frame of point cloud, second frame of point cloud and the ground truth scene flow vectors for the points in the first frame. Create a folder with name data_preprocessing and download the kitti dataset in it. The dataset directory should look as follows:

Self-Supervised-Scene-Flow-Estimation
|--data_preprocessing
|  |--kitti_self_supervised_flow
|  |  |--train
|  |  |--test

The data preprocessing file to run the code on KITTI is present in the src folder: kitti_dataset_self_supervised_cycle.py. To create a dataloader for own dataset, refer to the script:

nuscenes_dataset_self_supervised_cycle.py

Training and Evaluation

To train on own dataset, refer to the scripts:

train_1nn_cycle_nuscenes.py
bash src/commands/command_train_cycle_nuscenes.sh

To evaluate on the KITTI dataset, execute the shell script:

bash src/commands/command_evaluate_kitti.sh

Link to the pretrained model.

Visualization

You can use Open3d to visualize the results. A sample script is given in visualization.py

Owner
Himangi Mittal
Research intern at CMU working in Vision, Robotics and Autonomous Driving
Himangi Mittal
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

SynSense 21 Dec 14, 2022
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

Yuming Jiang 151 Dec 26, 2022
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

FluxML 278 Dec 11, 2022
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume

Fillmula Inc. 53 Dec 09, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022