Object detection GUI based on PaddleDetection

Overview

PP-Tracking GUI界面测试版

本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面

在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。

image-20211122180124835

GUI界面基于PyQT和PP-Tracking python部署代码开发;当前覆盖单镜头的全部功能,如行人跟踪,车辆跟踪,流量统计等

推荐使用Windows环境

主要包含两个步骤:

  • 导入训练模型,修改模型名称
  • 安装必要的依赖库
  • 启动前端界面

1. 下载预测模型

PP-Tracking 提供了覆盖多种场景的预测模型,用户可以根据自己的实际使用场景在链接中直接下载表格最后一列的预测部署模型

如果您想自己训练得到更符合您场景需求的模型,可以参考快速开始文档训练并导出预测模型

模型导出放在./output_inference目录下

2. 必要的依赖库安装

pyqt5
moviepy
opencv-python
PySide2
matplotlib
scipy
cython_bbox
paddlepaddle

注:

  1. Windows环境下,需要手动下载安装cython_bbox,然后将setup.py中的找到steup.py, 修改extra_compile_args=[’-Wno-cpp’],替换为extra_compile_args = {'gcc': ['/Qstd=c99']}, 然后运行python setup.py build_ext install
  2. numpy版本需要大于1.20

3. 启动前端界面

执行python main.py启动前端界面

参数说明如下:

参数 是否必须 含义
模型运行 Option 点击后进行模型训练
结果显示 Option 在运行状态为检测完成的时候进行结果视频显示
停止运行 Option 停止整个视频输出
取消轨迹 Option 在一开始时取消轨迹
阈值调试 Option 预测得分的阈值,默认为0.5
输入FPS Option 输入视频的FPS
检测用时 Option 视频的检测时间
人流量检测 Option 每隔一段帧数内的人流量统计图表
时间长度 Option 人流量时间统计长度
开启出入口 Option 导入视频后可自行选择是否开启出入口训练
导出文件 Option 可视化结果保存的根目录,默认为output/

说明:

  • 如果安装的PaddlePaddle不支持基于TensorRT进行预测,需要自行编译,详细可参考预测库编译教程
  • 建议使用windows环境进行运行
MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog, HyperLogLog++, LSH Ensemble

datasketch: Big Data Looks Small datasketch gives you probabilistic data structures that can process and search very large amount of data super fast,

Eric Zhu 1.9k Jan 07, 2023
Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch]

Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch] Abstract Snapshot compressive imaging (SCI) can rec

integirty 6 Nov 01, 2022
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
Code for Max-Margin Contrastive Learning - AAAI 2022

Max-Margin Contrastive Learning This is a pytorch implementation for the paper Max-Margin Contrastive Learning accepted to AAAI 2022. This repository

Anshul Shah 12 Oct 22, 2022
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
Convert scikit-learn models to PyTorch modules

sk2torch sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript. Problems

Alex Nichol 101 Dec 16, 2022
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 02, 2023
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
2 Jul 19, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
[IROS2021] NYU-VPR: Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences

NYU-VPR This repository provides the experiment code for the paper Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymiza

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 22 Sep 28, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
8-week curriculum for AI Builders

curriculum 8-week curriculum for AI Builders สารบัญ บทที่ 1 - Machine Learning คืออะไร บทที่ 2 - ชุดข้อมูลมหัศจรรย์และถิ่นที่อยู่ บทที่ 3 - Stochastic

AI Builders 134 Jan 03, 2023
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! 🎄 🎅 To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi

Wengong Jin 418 Jan 07, 2023