Computationally efficient algorithm that identifies boundary points of a point cloud.

Overview

BoundaryTest

Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation given a point cloud.

This package implements algorithms described in the paper

Calder, Park, and Slepčev. Boundary Estimation from Point Clouds: Algorithms, Guarantees and Applications. arXiv:2111.03217, 2021.

Download package

You can download the package with the Code button above or by cloning the repository with either of the commands below

git clone [email protected]:sangmin-park0/BoundaryTest
git clone https://github.com/sangmin-park0/BoundaryTest

depending on whether you prefer ssh (first) or https (second).

Usage (MATLAB package)

To use the MATLAB package, simply download the files under the folder bd_test_MATLAB.

  1. If you would like to run some quick examples in a Euclidean space, use the function distballann_norm. You can call the function by
[BP1,BP2,dtb, dtb2] = distballann_norm(n,r,L, eps, domain,dim)

Input arguments are: n (number of points), r (test radius), L (Lipschitz constant of the density from which the points are randomly sampled), eps (boundary thickness), domain (type of domain; 1 for a ball and 2 for an annulus), dim (dimension of the domain).

Outputs are: BP1 and BP2 (boundary points according to 1st order and 2nd order tests respectively, as described in the paper), dtb and dtb2 (the estimated distances from each point to the boundary, again according to 1st and 2nd order tests respectively). For example, the following code

distballann_norm(3000,0.18,2,0.03, 1, 3)

will sample n=3000 points from a ball in d=3 dimensions with radius 0.5 (fixed) from a density with Lipschitz constant L=2, then perform boundary test using the neighborhood radius r=0.18 and boundary thickness eps=0.03. Another example for the annulus, is

distballann_norm(9000,0.18,2,0.03, 2, 3)

This function will also output the following plots:

  • plot of true distance (black) versus dtb (blue hollow dots) and dtb2 (red hollow dots)
  • if the dimension is 2, the plot of the point cloud (black) and the boundary points from the 2nd order test (red hollow dots)
  1. If you already have a point cloud in a Euclidean space and the indices of points you wish to test for boundary, that's also fine! To compute boundary points with test do the following
nvec = estimated_normal(pts,r)
[bdry_pts,bdry_idx,dists] = bd_Test(pts,nvec,eps,r,test_type,test_idx)

here, the input arguments are: pts (point cloud), r (neighborhood radius), eps (thickness of the boundary region we want to identify), test_type (type of the test: 1 for 1st order, 2 for 2nd order; optional, and default value=2) test_idx (indices we wish to test for the boundary;optional, and default setting tests all points). Outputs are bdry_pts (boundary points), bdry_idx (indices of boundary points, as a subset of pts), and dists (estimated distances of tested points).

If you have a point cloud that lies in some lower-dimensional manifold embedded in a Euclidean space, instead of bd_test, use bd_test_manif in the following way

[bdry_pts,bdry_idx,dists] = bd_Test_manif(pts,nvec,eps,r,test_idx)

to obtain the same output. Again, test_idx is an optional argument, and default setting tests all points. In the manifold setting, the algorithm uses only the 2nd order test.

Usage (Python)

The Python boundary statistic is implemented in the GraphLearning Python package. Install the development version of GraphLearning from GitHub

git clone https://github.com/jwcalder/GraphLearning
cd GraphLearning
python setup.py install --user

The other required package is Annoy for fast approximate nearest neighbor searches, which should be automatically installed during the graph learning install. The 3D visualizations from our paper are generated with the Mayavi package. Mayavi can be difficult to install and currently has many issues, so any Python code related to Mayavi is commented out. If you have a working Mayavi installation, you can uncomment that code at your convenience to generate 3D visualizations of the solutions to PDEs on point clouds.

The main function for computing the boundary statistic is graphlearning.boundary_statistic. Below is an example showing how to finding boundary points from a random point cloud on the unit box in two dimensions.

import numpy as np
import graphlearning as gl

n = 5000
X = numpy.random.rand(n,2)  

r = 0.1    #Radius for boundary statistic
eps = 0.02 #Size of boundary tube to detect
S = gl.boundary_statistic(X,r)
bdy_pts = np.arange(n)[S < 3*eps/2]  #Boundary test to find boundary points

The full usage of graphlearning.boundary_statistic is copied below for convenience, and the Python folder has scripts for running the experiments from our paper concerned with solving PDEs on point clouds and detecting the boundary and depth of MNIST images. The only required arguments are X and r. Note that the function supports using a rangesearch or knnsearch for neighborhood identification for the test.

def boundary_statistic(X,r,knn=False,ReturnNormals=False,SecondOrder=True,CutOff=True,I=None,J=None,D=None):
    """Computes boundary detection statistic
    Args:
        X: nxd point cloud of points in dimension d
        r: radius for test (or number of neighbors if knn=True)
        knn: Use knn version of test (interprets r as number of neighbors)
        ReturnNormals: Whether to return normal vectors as well
        SecondOrder: Use second order test
        CutOff: Whether to use CutOff for second order test.
        I,J,D: Output of knnsearch (Optional, improves runtime if already available)
    Returns:
        Length n numpy array of test statistic. If ReturnNormals=True, then normal vectors are return as a second argument.
    """

Contact and questions

Please email [email protected] with any questions or comments.

Acknowledgements

Following people have contributed to the development of this software:

  1. Jeff Calder (University of Minnesota)

  2. Dejan Slepčev (Carnegie Mellon University)

License

MIT

Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

148 Dec 29, 2022
This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021.

PyTorch implementation of DAQ This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021. For more informatio

CV Lab @ Yonsei University 36 Nov 04, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints

CLGo This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints An earlier

刘芮金 32 Dec 20, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022