Computationally efficient algorithm that identifies boundary points of a point cloud.

Overview

BoundaryTest

Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation given a point cloud.

This package implements algorithms described in the paper

Calder, Park, and Slepčev. Boundary Estimation from Point Clouds: Algorithms, Guarantees and Applications. arXiv:2111.03217, 2021.

Download package

You can download the package with the Code button above or by cloning the repository with either of the commands below

git clone [email protected]:sangmin-park0/BoundaryTest
git clone https://github.com/sangmin-park0/BoundaryTest

depending on whether you prefer ssh (first) or https (second).

Usage (MATLAB package)

To use the MATLAB package, simply download the files under the folder bd_test_MATLAB.

  1. If you would like to run some quick examples in a Euclidean space, use the function distballann_norm. You can call the function by
[BP1,BP2,dtb, dtb2] = distballann_norm(n,r,L, eps, domain,dim)

Input arguments are: n (number of points), r (test radius), L (Lipschitz constant of the density from which the points are randomly sampled), eps (boundary thickness), domain (type of domain; 1 for a ball and 2 for an annulus), dim (dimension of the domain).

Outputs are: BP1 and BP2 (boundary points according to 1st order and 2nd order tests respectively, as described in the paper), dtb and dtb2 (the estimated distances from each point to the boundary, again according to 1st and 2nd order tests respectively). For example, the following code

distballann_norm(3000,0.18,2,0.03, 1, 3)

will sample n=3000 points from a ball in d=3 dimensions with radius 0.5 (fixed) from a density with Lipschitz constant L=2, then perform boundary test using the neighborhood radius r=0.18 and boundary thickness eps=0.03. Another example for the annulus, is

distballann_norm(9000,0.18,2,0.03, 2, 3)

This function will also output the following plots:

  • plot of true distance (black) versus dtb (blue hollow dots) and dtb2 (red hollow dots)
  • if the dimension is 2, the plot of the point cloud (black) and the boundary points from the 2nd order test (red hollow dots)
  1. If you already have a point cloud in a Euclidean space and the indices of points you wish to test for boundary, that's also fine! To compute boundary points with test do the following
nvec = estimated_normal(pts,r)
[bdry_pts,bdry_idx,dists] = bd_Test(pts,nvec,eps,r,test_type,test_idx)

here, the input arguments are: pts (point cloud), r (neighborhood radius), eps (thickness of the boundary region we want to identify), test_type (type of the test: 1 for 1st order, 2 for 2nd order; optional, and default value=2) test_idx (indices we wish to test for the boundary;optional, and default setting tests all points). Outputs are bdry_pts (boundary points), bdry_idx (indices of boundary points, as a subset of pts), and dists (estimated distances of tested points).

If you have a point cloud that lies in some lower-dimensional manifold embedded in a Euclidean space, instead of bd_test, use bd_test_manif in the following way

[bdry_pts,bdry_idx,dists] = bd_Test_manif(pts,nvec,eps,r,test_idx)

to obtain the same output. Again, test_idx is an optional argument, and default setting tests all points. In the manifold setting, the algorithm uses only the 2nd order test.

Usage (Python)

The Python boundary statistic is implemented in the GraphLearning Python package. Install the development version of GraphLearning from GitHub

git clone https://github.com/jwcalder/GraphLearning
cd GraphLearning
python setup.py install --user

The other required package is Annoy for fast approximate nearest neighbor searches, which should be automatically installed during the graph learning install. The 3D visualizations from our paper are generated with the Mayavi package. Mayavi can be difficult to install and currently has many issues, so any Python code related to Mayavi is commented out. If you have a working Mayavi installation, you can uncomment that code at your convenience to generate 3D visualizations of the solutions to PDEs on point clouds.

The main function for computing the boundary statistic is graphlearning.boundary_statistic. Below is an example showing how to finding boundary points from a random point cloud on the unit box in two dimensions.

import numpy as np
import graphlearning as gl

n = 5000
X = numpy.random.rand(n,2)  

r = 0.1    #Radius for boundary statistic
eps = 0.02 #Size of boundary tube to detect
S = gl.boundary_statistic(X,r)
bdy_pts = np.arange(n)[S < 3*eps/2]  #Boundary test to find boundary points

The full usage of graphlearning.boundary_statistic is copied below for convenience, and the Python folder has scripts for running the experiments from our paper concerned with solving PDEs on point clouds and detecting the boundary and depth of MNIST images. The only required arguments are X and r. Note that the function supports using a rangesearch or knnsearch for neighborhood identification for the test.

def boundary_statistic(X,r,knn=False,ReturnNormals=False,SecondOrder=True,CutOff=True,I=None,J=None,D=None):
    """Computes boundary detection statistic
    Args:
        X: nxd point cloud of points in dimension d
        r: radius for test (or number of neighbors if knn=True)
        knn: Use knn version of test (interprets r as number of neighbors)
        ReturnNormals: Whether to return normal vectors as well
        SecondOrder: Use second order test
        CutOff: Whether to use CutOff for second order test.
        I,J,D: Output of knnsearch (Optional, improves runtime if already available)
    Returns:
        Length n numpy array of test statistic. If ReturnNormals=True, then normal vectors are return as a second argument.
    """

Contact and questions

Please email [email protected] with any questions or comments.

Acknowledgements

Following people have contributed to the development of this software:

  1. Jeff Calder (University of Minnesota)

  2. Dejan Slepčev (Carnegie Mellon University)

License

MIT

A Broader Picture of Random-walk Based Graph Embedding

Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa

Zexi Huang 23 Dec 13, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
Official Pytorch Implementation for Splicing ViT Features for Semantic Appearance Transfer presenting Splice

Splicing ViT Features for Semantic Appearance Transfer [Project Page] Splice is a method for semantic appearance transfer, as described in Splicing Vi

Omer Bar Tal 253 Jan 06, 2023
A motion detection system with RaspberryPi, OpenCV, Python

Human Detection System using Raspberry Pi Functionality Activates a relay on detecting motion. You may need following components to get the expected R

Omal Perera 55 Dec 04, 2022
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
Indices Matter: Learning to Index for Deep Image Matting

IndexNet Matting This repository includes the official implementation of IndexNet Matting for deep image matting, presented in our paper: Indices Matt

Hao Lu 357 Nov 26, 2022
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

George Gunter 4 Nov 14, 2022
Detector for Log4Shell exploitation attempts

log4shell-detector Detector for Log4Shell exploitation attempts Idea The problem with the log4j CVE-2021-44228 exploitation is that the string can be

Florian Roth 729 Dec 25, 2022
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022