[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

Overview

GNeRF

This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation is written in Pytorch.

architecture

Abstract

We introduce GNeRF, a framework to marry Generative Adversarial Networks (GAN) with Neural Radiance Field (NeRF) reconstruction for the complex scenarios with unknown and even randomly initialized camera poses. Recent NeRF-based advances have gained popularity for remarkable realistic novel view synthesis. However, most of them heavily rely on accurate camera poses estimation, while few recent methods can only optimize the unknown camera poses in roughly forward-facing scenes with relatively short camera trajectories and require rough camera poses initialization. Differently, our GNeRF only utilizes randomly initialized poses for complex outside-in scenarios. We propose a novel two-phases end-to-end framework. The first phase takes the use of GANs into the new realm for optimizing coarse camera poses and radiance fields jointly, while the second phase refines them with additional photometric loss. We overcome local minima using a hybrid and iterative optimization scheme. Extensive experiments on a variety of synthetic and natural scenes demonstrate the effectiveness of GNeRF. More impressively, our approach outperforms the baselines favorably in those scenes with repeated patterns or even low textures that are regarded as extremely challenging before.

Installation

We recommand using Anaconda to setup the environment. Run the following commands:

# Create a conda environment named 'gnerf'
conda create --name gnerf python=3.7
# Activate the environment
conda activate gnerf
# Install requirements
pip install -r requirements.txt

Data

Blender

Download from the NeRF official Google Drive . Please download and unzip nerf_synthetic.zip.

DTU

Download the preprocessed DTU training data from original MVSNet repo and unzip. We also provide a few DTU examples for fast testing.

Your own data

We share some advices on preparing your own dataset and setting related parameters:

  • Pose sampling space should be close to the data: Our method requires a reasonable prior pose distribution.
  • The training may fail to converge on symmetrical scenes: The inversion network can not map an image to different poses.

Running

python train.py ./config/CONFIG.yaml --data_dir PATH/TO/DATASET

where you replace CONFIG.yaml with your config file (blender.yaml for blender dataset and dtu.yaml for DTU dataset). You can optionally monitor on the training process using tensorboard by adding --open_tensorboard argument. The default setting takes around 13GB GPU memory. After 40k iterations, you should get a video like these:

Evaluation

python eval.py --ckpt PATH/TO/CKPT.pt --gt PATH/TO/GT.json 

where you replace PATH/TO/CKPT.pt with your trained model checkpoint, and PATH/TO/GT.json with the json file in NeRF-Synthetic dataset. Then, just run the ATE toolbox on the evaluation directory.

List of Possible Improvements

For future work, we recommend the following aspects to further improve the performance and stability:

  • Replace the single NeRF network with mip-NeRF network: The use of separate MLPs in the original NeRF paper is a key detail to represent thin objects in the scene, if you retrain the original NeRF with only one MLP you will find a decrease in performance. While in our work, a single MLP network is necessary to keep the coarse image and fine image aligned. The cone casting and IPE features of mip-NeRF allow it to explicitly encode scale into the input features and thereby enable an MLP to learn a multiscale representation of the scene.

  • Combine BARF to further overcome local minima: The BARF method shows that susceptibility to noise from positional encoding affects the basin of attraction for registration and present a coarse-to-fine registration strategy.

  • Combine NeRF++ to represent the background in real scenes with complex background.

Citation

If you find our code or paper useful, please consider citing

@InProceedings{meng2021gnerf,
    author = {Meng, Quan and Chen, Anpei and Luo, Haimin and Wu, Minye and Su, Hao and Xu, Lan and He, Xuming and Yu, Jingyi},
    title = {{G}{N}e{R}{F}: {G}{A}{N}-based {N}eural {R}adiance {F}ield without {P}osed {C}amera},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    year = {2021}
}

Some code snippets are borrowed from GRAF and nerf_pl. Thanks for these great projects.

Owner
Quan Meng
Quan Meng
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
The authors' official PyTorch SigWGAN implementation

The authors' official PyTorch SigWGAN implementation This repository is the official implementation of [Sig-Wasserstein GANs for Time Series Generatio

9 Jun 16, 2022
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022
Vision-and-Language Navigation in Continuous Environments using Habitat

Vision-and-Language Navigation in Continuous Environments (VLN-CE) Project Website — VLN-CE Challenge — RxR-Habitat Challenge Official implementations

Jacob Krantz 132 Jan 02, 2023
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:

MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents

MLJAR 2.4k Dec 31, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022