Tracking Progress in Question Answering over Knowledge Graphs

Overview

Tracking Progress in Question Answering over Knowledge Graphs

Table of contents

Question Answering Systems with Descriptions

The QA Systems Table contains links to publications, demo/APIs (if available) and short descriptions of ca. 100 QA systems.

DBpedia

Wikidata

Freebase

Other KGs

This leaderboard aims to provide a central place to compare the capabilities of different Knowledge Graph Question Answering (KGQA) approaches. It gives a global view of the state-of-the-art (SOTA) across many KGQA benchmarks.

Using a global and open resource, trusting evaluation results will be easier. In particular, we want to close gaps in evaluation campaigns to avoid incomplete or missing comparisons. The ultimate goal is to prevent a replication crisis before it even starts.

Contributing

Adding a new result

If you would like to add a new result, you can just click on the small edit button in the top-right corner of the file for the respective dataset. This allows you to edit the file in Markdown. Simply add a row to the corresponding table in the same format. Make sure that the table stays sorted (with the best result on top). After you've made your change, make sure that the table still looks ok by clicking on the "Preview changes" tab at the top of the page. If everything looks good, go to the bottom of the page, where you see the below form.

Add a name for your proposed change, an optional description, indicate that you would like to "Create a new branch for this commit and start a pull request", and click on "Propose file change".

Adding a new dataset or task

For adding a new dataset or task, you can also follow the steps above. Alternatively, you can fork the repository. In both cases, follow the steps below:

  1. If your dataset is completely new, create a new file and link to it in the table of contents above.
  2. Briefly describe the dataset and include relevant references.
  3. Describe the evaluation setting and evaluation metric.
  4. Show how an annotated example of the dataset looks like.
  5. Add a download link if available.
  6. Copy the below table and fill in at least two results (including the state-of-the-art) for your dataset (change Metric1/Metric2/Metric3 to the metric of your dataset).
  7. Submit your change as a pull request.
Model / System Year Metric1 Metric2 Metric3 Reported by

Instructions for building the site locally

Instructions for building the website locally using Jekyll can be found here.

Citation

Please cite the following:

Perevalov, A., Yan, X., Kovriguina, L., Jiang, L., Both, A., & Usbeck, R. (2022). Knowledge Graph Question Answering Leaderboard: A Community Resource to Prevent a Replication Crisis. arXiv preprint arXiv:2201.08174.

Acknowledgement

This site is based on https://nlpprogress.com/ and thus, a great thanks goes to Sebastian Ruder.

Owner
Knowledge Graph Question Answering
Knowledge Graph Question Answering
A library of scripts that interact with the PythonTurtle module to create games, drawings, and more

TurtleLib TurtleLib is a library of scripts that interact with the PythonTurtle module to create games, drawings, and more! Using the Scripts Copy or

1 Jan 15, 2022
EM-POSE 3D Human Pose Estimation from Sparse Electromagnetic Trackers.

EM-POSE: 3D Human Pose Estimation from Sparse Electromagnetic Trackers This repository contains the code to our paper published at ICCV 2021. For ques

Facebook Research 62 Dec 14, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition - NeurIPS2021

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition Project Page | Video | Paper Implementation for Neural-PIL. A novel method wh

Computergraphics (University of Tübingen) 64 Dec 29, 2022
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
A Marvelous ChatBot implement using PyTorch.

PyTorch Marvelous ChatBot [Update] it's 2019 now, previously model can not catch up state-of-art now. So we just move towards the future a transformer

JinTian 223 Oct 18, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
Implementation of the paper Recurrent Glimpse-based Decoder for Detection with Transformer.

REGO-Deformable DETR By Zhe Chen, Jing Zhang, and Dacheng Tao. This repository is the implementation of the paper Recurrent Glimpse-based Decoder for

Zhe Chen 33 Nov 30, 2022
TensorFlow implementation of the algorithm in the paper "Decoupled Low-light Image Enhancement"

Decoupled Low-light Image Enhancement Shijie Hao1,2*, Xu Han1,2, Yanrong Guo1,2 & Meng Wang1,2 1Key Laboratory of Knowledge Engineering with Big Data

17 Apr 25, 2022
Artstation-Artistic-face-HQ Dataset (AAHQ)

Artstation-Artistic-face-HQ Dataset (AAHQ) Artstation-Artistic-face-HQ (AAHQ) is a high-quality image dataset of artistic-face images. It is proposed

onion 105 Dec 16, 2022
Public repository created to store my custom-made tools for Just Dance (UbiArt Engine)

Woody's Just Dance Tools Public repository created to store my custom-made tools for Just Dance (UbiArt Engine) Development and updates Almost all of

Wodson de Andrade 8 Dec 24, 2022
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
A parallel framework for population-based multi-agent reinforcement learning.

MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested

MARL @ SJTU 348 Jan 08, 2023
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022