A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

Overview

A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

This repository is the official implementation of A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery by Aatif Jiwani, Shubhrakanti Ganguly, Chao Ding, Nan Zhou, and David Chan.

model visualization

Requirements

  1. To install GDAL/georaster, please follow this doc for instructions.
  2. Install other dependencies from requirements.txt
pip install -r requirements.txt

Datasets

Downloading the Datasets

  1. To download the AICrowd dataset, please go here. You will have to either create an account or sign in to access the training and validation set. Please store the training/validation set inside <root>/AICrowd/<train | val> for ease of conversion.
  2. To download the Urban3D dataset, please run:
aws s3 cp --recursive s3://spacenet-dataset/Hosted-Datasets/Urban_3D_Challenge/01-Provisional_Train/ <root>/Urban3D/train
aws s3 cp --recursive s3://spacenet-dataset/Hosted-Datasets/Urban_3D_Challenge/02-Provisional_Test/ <root>/Urban3D/test
  1. To download the SpaceNet Vegas dataset, please run:
aws s3 cp s3://spacenet-dataset/spacenet/SN2_buildings/tarballs/SN2_buildings_train_AOI_2_Vegas.tar.gz <root>/SpaceNet/Vegas/
aws s3 cp s3://spacenet-dataset/spacenet/SN2_buildings/tarballs/AOI_2_Vegas_Test_public.tar.gz <root>/SpaceNet/Vegas/

tar xvf <root>/SpaceNet/Vegas/SN2_buildings_train_AOI_2_Vegas.tar.gz
tar xvf <root>/SpaceNet/Vegas/AOI_2_Vegas_Test_public.tar.gz

Converting the Datasets

Please use our provided dataset converters to process the datasets. For all converters, please look at the individual files for an example of how to use them.

  1. For AICrowd, use datasets/converters/cocoAnnotationToMask.py.
  2. For Urban3D, use datasets/converters/urban3dDataConverter.py.
  3. For SpaceNet, use datasets/converters/spaceNetDataConverter.py

Creating the Boundary Weight Maps

In order to train with the exponentially weighted boundary loss, you will need to create the weight maps as a pre-processing step. Please use datasets/converters/weighted_boundary_processor.py and follow the example usage. The inc parameter is specified for computational reasons. Please decrease this value if you notice very high memory usage.

Note: these maps are not required for evaluation / testing.

Training and Evaluation

To train / evaluate the DeepLabV3+ models described in the paper, please use train_deeplab.sh or test_deeplab.sh for your convenience. We employ the following primary command-line arguments:

Parameter Default Description (final argument)
--backbone resnet The DeeplabV3+ backbone (final method used drn_c42)
--out-stride 16 The backbone compression facter (8)
--dataset urban3d The dataset to train / evaluate on (other choices: spaceNet, crowdAI, combined)
--data-root /data/ Please replace this with the root folder of the dataset samples
--workers 2 Number of workers for dataset retrieval
--loss-type ce_dice Type of objective function. Use wce_dice for exponentially weighted boundary loss
--fbeta 1 The beta value to use with the F-Beta Measure (0.5)
--dropout 0.1 0.5 Dropout values to use in the DeepLabV3+ (0.3 0.5)
--epochs None Number of epochs to train (60 for train, 1 for test)
--batch-size None Batch size (3/4)
--test-batch-size None Testing Batch Size (1/4)
--lr 1e-4 Learning Rate (1e-3)
--weight-decay 5e-4 L2 Regularization Constant (1e-4)
--gpu-ids 0 GPU Ids (Use --no-cuda for only CPU)
--checkname None Experiment name
--use-wandb False Track experiment using WandB
--resume None Experiment name to load weights from (i.e. urban for weights/urban/checkpoint.pth.tar)
--evalulate False Enable this flag for testing
--best-miou False Enable this flag to get best results when testing
--incl-bounds False Enable this flag when training with wce_dice as a loss

To train with the cross-task training strategy, you need to:

  1. Train a model using --dataset=combined until the best loss has been achieved
  2. Train a model using --resume=<checkname> on one of the three primary datasets until the best mIoU is achieved

Pre-Trained Weights

We provide pre-trained model weights in the weights/ directory. Please use Git LFS to download these weights. These weights correspond to our best model on all three datasets.

Results

Our final model is a DeepLavV3+ module with a Dilated ResNet C42 backbone trained using the F-Beta Measure + Exponentially Weighted Cross Entropy Loss (Beta = 0.5). We employ the cross-task training strategy only for Urban3D and SpaceNet.

Our model achieves the following:

Dataset Avg. Precision Avg. Recall F1 Score mIoU
Urban3D 83.8% 82.2% 82.4% 83.3%
SpaceNet 91.4% 91.8% 91.6% 90.2%
AICrowd 96.2% 96.3% 96.3% 95.4%

Acknowledgements

We would like to thank jfzhang95 for his DeepLabV3+ model and training template. You can access this repository here

Owner
Aatif Jiwani
Hey! I am Aatif Jiwani, and I am currently a Machine Learning Engineer at C3.ai. Previously, I studied EECS at UC Berkeley and did research at BAIR and LBNL.
Aatif Jiwani
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.

Interscript The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts. Dataset data.json contains the data in an

AI2 8 Dec 01, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Multiple paper open-source codes of the Microsoft Research Asia DKI group

📫 Paper Code Collection (MSRA DKI Group) This repo hosts multiple open-source codes of the Microsoft Research Asia DKI Group. You could find the corr

Microsoft 249 Jan 08, 2023
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022