AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

Overview

AOT-GAN for High-Resolution Image Inpainting

aotgan

Arxiv Paper |

AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting
Yanhong Zeng, Jianlong Fu, Hongyang Chao, and Baining Guo.

Citation

If any part of our paper and code is helpful to your work, please generously cite and star us 😘 😘 😘 !

@inproceedings{yan2021agg,
  author = {Zeng, Yanhong and Fu, Jianlong and Chao, Hongyang and Guo, Baining},
  title = {Aggregated Contextual Transformations for High-Resolution Image Inpainting},
  booktitle = {Arxiv},
  pages={-},
  year = {2020}
}

Introduction

Despite some promising results, it remains challenging for existing image inpainting approaches to fill in large missing regions in high resolution images (e.g., 512x512). We analyze that the difficulties mainly drive from simultaneously inferring missing contents and synthesizing fine-grained textures for a extremely large missing region. We propose a GAN-based model that improves performance by,

  1. Enhancing context reasoning by AOT Block in the generator. The AOT blocks aggregate contextual transformations with different receptive fields, allowing to capture both informative distant contexts and rich patterns of interest for context reasoning.
  2. Enhancing texture synthesis by SoftGAN in the discriminator. We improve the training of the discriminator by a tailored mask-prediction task. The enhanced discriminator is optimized to distinguish the detailed appearance of real and synthesized patches, which can in turn facilitate the generator to synthesize more realistic textures.

Results

face_object logo

Prerequisites

  • python 3.8.8
  • pytorch (tested on Release 1.8.1)

Installation

Clone this repo.

git clone [email protected]:researchmm/AOT-GAN-for-Inpainting.git
cd AOT-GAN-for-Inpainting/

For the full set of required Python packages, we suggest create a Conda environment from the provided YAML, e.g.

conda env create -f environment.yml 
conda activate inpainting

Datasets

  1. download images and masks
  2. specify the path to training data by --dir_image and --dir_mask.

Getting Started

  1. Training:
    • Our codes are built upon distributed training with Pytorch.
    • Run
    cd src 
    python train.py  
    
  2. Resume training:
    cd src
    python train.py --resume 
    
  3. Testing:
    cd src 
    python test.py --pre_train [path to pretrained model] 
    
  4. Evaluating:
    cd src 
    python eval.py --real_dir [ground truths] --fake_dir [inpainting results] --metric mae psnr ssim fid
    

Pretrained models

CELEBA-HQ | Places2

Download the model dirs and put it under experiments/

Demo

  1. Download the pre-trained model parameters and put it under experiments/
  2. Run by
cd src
python demo.py --dir_image [folder to images]  --pre_train [path to pre_trained model] --painter [bbox|freeform]
  1. Press '+' or '-' to control the thickness of painter.
  2. Press 'r' to reset mask; 'k' to keep existing modifications; 's' to save results.
  3. Press space to perform inpainting; 'n' to move to next image; 'Esc' to quit demo.

face logo

TensorBoard

Visualization on TensorBoard for training is supported.

Run tensorboard --logdir [log_folder] --bind_all and open browser to view training progress.

Acknowledgements

We would like to thank edge-connect, EDSR_PyTorch.

Owner
Multimedia Research
Multimedia Research at Microsoft Research Asia
Multimedia Research
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
DiAne is a smart fuzzer for IoT devices

Diane Diane is a fuzzer for IoT devices. Diane works by identifying fuzzing triggers in the IoT companion apps to produce valid yet under-constrained

seclab 28 Jan 04, 2023
Resilient projection-based consensus actor-critic (RPBCAC) algorithm

Resilient projection-based consensus actor-critic (RPBCAC) algorithm We implement the RPBCAC algorithm with nonlinear approximation from [1] and focus

Martin Figura 5 Jul 12, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
Graph Transformer Architecture. Source code for

Graph Transformer Architecture Source code for the paper "A Generalization of Transformer Networks to Graphs" by Vijay Prakash Dwivedi and Xavier Bres

NTU Graph Deep Learning Lab 561 Jan 08, 2023
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
A Moonraker plug-in for real-time compensation of frame thermal expansion

Frame Expansion Compensation A Moonraker plug-in for real-time compensation of frame thermal expansion. Installation Credit to protoloft, from whom I

58 Jan 02, 2023
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021