MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

Related tags

Deep LearningMVS2D
Overview

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

Project Page | Paper


drawing

If you find our work useful for your research, please consider citing our paper:

@article{DBLP:journals/corr/abs-2104-13325,
  author    = {Zhenpei Yang and
               Zhile Ren and
               Qi Shan and
               Qixing Huang},
  title     = {{MVS2D:} Efficient Multi-view Stereo via Attention-Driven 2D Convolutions},
  journal   = {CoRR},
  volume    = {abs/2104.13325},
  year      = {2021},
  url       = {https://arxiv.org/abs/2104.13325},
  eprinttype = {arXiv},
  eprint    = {2104.13325},
  timestamp = {Tue, 04 May 2021 15:12:43 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2104-13325.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

✏️ Changelog

Nov 27 2021

  • Initial release. Note that our released code achieve improved results than those reported in the initial arxiv pre-print. In addition, we include the evaluation on DTU dataset. We will update our paper soon.

⚙️ Installation

Click to expand

The code is tested with CUDA10.1. Please use following commands to install dependencies:

conda create --name mvs2d python=3.7
conda activate mvs2d

pip install -r requirements.txt

The folder structure should looks like the following if you have downloaded all data and pretrained models. Download links are inside each dataset tab at the end of this README.

.
├── configs
├── datasets
├── demo
├── networks
├── scripts
├── pretrained_model
│   ├── demon
│   ├── dtu
│   └── scannet
├── data
│   ├── DeMoN
│   ├── DTU_hr
│   ├── SampleSet
│   ├── ScanNet
│   └── ScanNet_3_frame_jitter_pose.npy
├── splits
│   ├── DeMoN_samples_test_2_frame.npy
│   ├── DeMoN_samples_train_2_frame.npy
│   ├── ScanNet_3_frame_test.npy
│   ├── ScanNet_3_frame_train.npy
│   └── ScanNet_3_frame_val.npy

🎬 Demo

Click to expand

After downloading the pretrained models for ScanNet, try to run following command to make a prediction on a sample data.

python demo.py --cfg configs/scannet/release.conf

The results are saved as demo.png

Training & Testing

We use 4 Nvidia V100 GPU for training. You may need to modify 'CUDA_VISIBLE_DEVICES' and batch size to accomodate your GPU resources.

ScanNet

Click to expand

Download

data 🔗 split 🔗 pretrained models 🔗 noisy pose 🔗

Training

First download and extract ScanNet training data and split. Then run following command to train our model.

bash scripts/scannet/train.sh

To train the multi-scale attention model, add --robust 1 to the training command in scripts/scannet/train.sh.

To train our model with noisy input pose, add --perturb_pose 1 to the training command in scripts/scannet/train.sh.

Testing

First download and extract data, split and pretrained models.

Then run:

bash scripts/scannet/test.sh

You should get something like these:

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.059 0.016 0.026 0.157 0.084 0.964 0.995 0.999 0.108 0.079 0.856 0.974 0.996

SUN3D/RGBD/Scenes11

Click to expand

Download

data 🔗 split 🔗 pretrained models 🔗

Training

First download and extract DeMoN training data and split. Then run following command to train our model.

bash scripts/demon/train.sh

Testing

First download and extract data, split and pretrained models.

Then run:

bash scripts/demon/test.sh

You should get something like these:

dataset rgbd: 160

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.082 0.165 0.047 0.440 0.147 0.921 0.939 0.948 0.325 0.284 0.753 0.894 0.933

dataset scenes11: 256

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.046 0.080 0.018 0.439 0.107 0.976 0.989 0.993 0.155 0.058 0.822 0.945 0.979

dataset sun3d: 160

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.099 0.055 0.044 0.304 0.137 0.893 0.970 0.993 0.224 0.171 0.649 0.890 0.969

-> Done!

depth

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.071 0.096 0.033 0.402 0.127 0.938 0.970 0.981 0.222 0.152 0.755 0.915 0.963

DTU

Click to expand

Download

data 🔗 eval data 🔗 pretrained models 🔗

Training

First download and extract DTU training data. Then run following command to train our model.

bash scripts/dtu/test.sh

Testing

First download and extract DTU eval data and pretrained models.

The following command performs three steps together: 1. Generate depth prediction on DTU test set. 2. Fuse depth predictions into final point cloud. 3. Evaluate predicted point cloud. Note that we re-implement the original Matlab Evaluation of DTU dataset using python.

bash scripts/dtu/test.sh

You should get something like these:

Acc 0.4051747996189477
Comp 0.2776021161518006
F-score 0.34138845788537414

Acknowledgement

The fusion code for DTU dataset is heavily built upon from PatchMatchNet

Owner
CS PhD student
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

567 Dec 26, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
Utilizes Pose Estimation to offer sprinters cues based on an image of their running form.

Running-Form-Correction Utilizes Pose Estimation to offer sprinters cues based on an image of their running form. How to Run Dependencies You will nee

3 Nov 08, 2022
Pytorch and Torch testing code of CartoonGAN

CartoonGAN-Test-Pytorch-Torch Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors,

Yijun Li 642 Dec 27, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

205 Jan 09, 2023
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023