MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

Related tags

Deep LearningMVS2D
Overview

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

Project Page | Paper


drawing

If you find our work useful for your research, please consider citing our paper:

@article{DBLP:journals/corr/abs-2104-13325,
  author    = {Zhenpei Yang and
               Zhile Ren and
               Qi Shan and
               Qixing Huang},
  title     = {{MVS2D:} Efficient Multi-view Stereo via Attention-Driven 2D Convolutions},
  journal   = {CoRR},
  volume    = {abs/2104.13325},
  year      = {2021},
  url       = {https://arxiv.org/abs/2104.13325},
  eprinttype = {arXiv},
  eprint    = {2104.13325},
  timestamp = {Tue, 04 May 2021 15:12:43 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2104-13325.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

✏️ Changelog

Nov 27 2021

  • Initial release. Note that our released code achieve improved results than those reported in the initial arxiv pre-print. In addition, we include the evaluation on DTU dataset. We will update our paper soon.

⚙️ Installation

Click to expand

The code is tested with CUDA10.1. Please use following commands to install dependencies:

conda create --name mvs2d python=3.7
conda activate mvs2d

pip install -r requirements.txt

The folder structure should looks like the following if you have downloaded all data and pretrained models. Download links are inside each dataset tab at the end of this README.

.
├── configs
├── datasets
├── demo
├── networks
├── scripts
├── pretrained_model
│   ├── demon
│   ├── dtu
│   └── scannet
├── data
│   ├── DeMoN
│   ├── DTU_hr
│   ├── SampleSet
│   ├── ScanNet
│   └── ScanNet_3_frame_jitter_pose.npy
├── splits
│   ├── DeMoN_samples_test_2_frame.npy
│   ├── DeMoN_samples_train_2_frame.npy
│   ├── ScanNet_3_frame_test.npy
│   ├── ScanNet_3_frame_train.npy
│   └── ScanNet_3_frame_val.npy

🎬 Demo

Click to expand

After downloading the pretrained models for ScanNet, try to run following command to make a prediction on a sample data.

python demo.py --cfg configs/scannet/release.conf

The results are saved as demo.png

Training & Testing

We use 4 Nvidia V100 GPU for training. You may need to modify 'CUDA_VISIBLE_DEVICES' and batch size to accomodate your GPU resources.

ScanNet

Click to expand

Download

data 🔗 split 🔗 pretrained models 🔗 noisy pose 🔗

Training

First download and extract ScanNet training data and split. Then run following command to train our model.

bash scripts/scannet/train.sh

To train the multi-scale attention model, add --robust 1 to the training command in scripts/scannet/train.sh.

To train our model with noisy input pose, add --perturb_pose 1 to the training command in scripts/scannet/train.sh.

Testing

First download and extract data, split and pretrained models.

Then run:

bash scripts/scannet/test.sh

You should get something like these:

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.059 0.016 0.026 0.157 0.084 0.964 0.995 0.999 0.108 0.079 0.856 0.974 0.996

SUN3D/RGBD/Scenes11

Click to expand

Download

data 🔗 split 🔗 pretrained models 🔗

Training

First download and extract DeMoN training data and split. Then run following command to train our model.

bash scripts/demon/train.sh

Testing

First download and extract data, split and pretrained models.

Then run:

bash scripts/demon/test.sh

You should get something like these:

dataset rgbd: 160

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.082 0.165 0.047 0.440 0.147 0.921 0.939 0.948 0.325 0.284 0.753 0.894 0.933

dataset scenes11: 256

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.046 0.080 0.018 0.439 0.107 0.976 0.989 0.993 0.155 0.058 0.822 0.945 0.979

dataset sun3d: 160

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.099 0.055 0.044 0.304 0.137 0.893 0.970 0.993 0.224 0.171 0.649 0.890 0.969

-> Done!

depth

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.071 0.096 0.033 0.402 0.127 0.938 0.970 0.981 0.222 0.152 0.755 0.915 0.963

DTU

Click to expand

Download

data 🔗 eval data 🔗 pretrained models 🔗

Training

First download and extract DTU training data. Then run following command to train our model.

bash scripts/dtu/test.sh

Testing

First download and extract DTU eval data and pretrained models.

The following command performs three steps together: 1. Generate depth prediction on DTU test set. 2. Fuse depth predictions into final point cloud. 3. Evaluate predicted point cloud. Note that we re-implement the original Matlab Evaluation of DTU dataset using python.

bash scripts/dtu/test.sh

You should get something like these:

Acc 0.4051747996189477
Comp 0.2776021161518006
F-score 0.34138845788537414

Acknowledgement

The fusion code for DTU dataset is heavily built upon from PatchMatchNet

Owner
CS PhD student
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
This repository contains the code for Direct Molecular Conformation Generation (DMCG).

Direct Molecular Conformation Generation This repository contains the code for Direct Molecular Conformation Generation (DMCG). Dataset Download rdkit

25 Dec 20, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
Xintao 1.4k Dec 25, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022