Stochastic Scene-Aware Motion Prediction

Overview

Stochastic Scene-Aware Motion Prediction

[Project Page] [Paper]

SAMP Examples

Description

This repository contains the training code for MotionNet and GoalNet of SAMP. Pipeline

Installation

To install the necessary dependencies run the following command:

    pip install -r requirements.txt

The code has been tested with Python 3.8.10, CUDA 10.0, CuDNN 7.5 and PyTorch 1.7.1 on Ubuntu 20.04.

Training Data

The training data for MotionNet and GoalNet could be found in the website downloads. Or could be extracted from the Unity runtime code.

Update data_dir parameter in the config files cfg_files\MotionNet.yaml and cfg_files\GoalNet.yaml to where your data is placed. By default it is set to ~\SAMP_workspace\data\MotionNet and ~\SAMP_workspace\data\GoalNet.

The training features of MotionNet and GoalNet are described in Section 3.1 and Section 3.2 of the [Paper] respectively. The character state X is described in Equation 1.

Training

To train MotionNet use:

    python src/MotionNet_train.py --config cfg_files/MotionNet.yaml

To train GoalNet use:

    python src/GoalNet_train.py --config cfg_files/GoalNet.yaml

Training MotionNet for 100 epochs takes ~5 hours on Tesla V100-PCIE-32GB. Training GoalNet should be done within 10 minutes.

Loading the trained model to Unity

After training; the PyTorch model need to be converted to ONNX in order to be used in Unity. Check https://onnx.ai/ for more details about ONNX. In Unity; we will use Barracuda which is an inference library which can load ONNX models into Unity. More details about Barracuda here.

    python src/Torch2ONNX.py --config cfg_files/MotionNet.yaml --load_checkpoint 100
    python src/Torch2ONNX.py --config cfg_files/GoalNet.yaml --load_checkpoint 100

Saving norm data

The normalization data is used during training and inference. To save normalization data use the following

    python src/save_norm_data.py --config cfg_files/MotionNet.yaml

or

    python src/save_norm_data.py --config cfg_files/GoalNet.yaml

Note that this might take couple of minutes as the script loads the whole training data.

License

  1. You may use, reproduce, modify, and display the research materials provided under this license (the “Research Materials”) solely for noncommercial purposes. Noncommercial purposes include academic research, teaching, and testing, but do not include commercial licensing or distribution, development of commercial products, or any other activity which results in commercial gain. You may not redistribute the Research Materials.
  2. You agree to (a) comply with all laws and regulations applicable to your use of the Research Materials under this license, including but not limited to any import or export laws; (b) preserve any copyright or other notices from the Research Materials; and (c) for any Research Materials in object code, not attempt to modify, reverse engineer, or decompile such Research Materials except as permitted by applicable law.
  3. THE RESEARCH MATERIALS ARE PROVIDED “AS IS,” WITHOUT WARRANTY OF ANY KIND, AND YOU ASSUME ALL RISKS ASSOCIATED WITH THEIR USE. IN NO EVENT WILL ANYONE BE LIABLE TO YOU FOR ANY ACTUAL, INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH USE OF THE RESEARCH MATERIALS.

Citation

If you find this Model & Software useful in your research we would kindly ask you to cite:

@inproceedings{hassan_samp_2021,
  title = {Stochastic Scene-Aware Motion Prediction},
  author = {Hassan, Mohamed and Ceylan, Duygu and Villegas, Ruben and Saito, Jun and Yang, Jimei and Zhou, Yi and Black, Michael},
  booktitle = {Proceedings of the International Conference on Computer Vision 2021},
  month = oct,
  year = {2021},
  event_name = {International Conference on Computer Vision 2021},
  event_place = {virtual (originally Montreal, Canada)},
  month_numeric = {10}
}
Owner
Mohamed Hassan
Mohamed Hassan
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning

SPCL SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning Update on 2021/11/25: ArXiv Ver

Binhui Xie (谢斌辉) 11 Oct 29, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
General Vision Benchmark, a project from OpenGVLab

Introduction We build GV-B(General Vision Benchmark) on Classification, Detection, Segmentation and Depth Estimation including 26 datasets for model e

174 Dec 27, 2022
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

Microsoft 409 Jan 06, 2023
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Xili Dai 115 Dec 28, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution.

convolver Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution. Created by Sean Higley

Sean Higley 1 Feb 23, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023