Stochastic Scene-Aware Motion Prediction

Overview

Stochastic Scene-Aware Motion Prediction

[Project Page] [Paper]

SAMP Examples

Description

This repository contains the training code for MotionNet and GoalNet of SAMP. Pipeline

Installation

To install the necessary dependencies run the following command:

    pip install -r requirements.txt

The code has been tested with Python 3.8.10, CUDA 10.0, CuDNN 7.5 and PyTorch 1.7.1 on Ubuntu 20.04.

Training Data

The training data for MotionNet and GoalNet could be found in the website downloads. Or could be extracted from the Unity runtime code.

Update data_dir parameter in the config files cfg_files\MotionNet.yaml and cfg_files\GoalNet.yaml to where your data is placed. By default it is set to ~\SAMP_workspace\data\MotionNet and ~\SAMP_workspace\data\GoalNet.

The training features of MotionNet and GoalNet are described in Section 3.1 and Section 3.2 of the [Paper] respectively. The character state X is described in Equation 1.

Training

To train MotionNet use:

    python src/MotionNet_train.py --config cfg_files/MotionNet.yaml

To train GoalNet use:

    python src/GoalNet_train.py --config cfg_files/GoalNet.yaml

Training MotionNet for 100 epochs takes ~5 hours on Tesla V100-PCIE-32GB. Training GoalNet should be done within 10 minutes.

Loading the trained model to Unity

After training; the PyTorch model need to be converted to ONNX in order to be used in Unity. Check https://onnx.ai/ for more details about ONNX. In Unity; we will use Barracuda which is an inference library which can load ONNX models into Unity. More details about Barracuda here.

    python src/Torch2ONNX.py --config cfg_files/MotionNet.yaml --load_checkpoint 100
    python src/Torch2ONNX.py --config cfg_files/GoalNet.yaml --load_checkpoint 100

Saving norm data

The normalization data is used during training and inference. To save normalization data use the following

    python src/save_norm_data.py --config cfg_files/MotionNet.yaml

or

    python src/save_norm_data.py --config cfg_files/GoalNet.yaml

Note that this might take couple of minutes as the script loads the whole training data.

License

  1. You may use, reproduce, modify, and display the research materials provided under this license (the “Research Materials”) solely for noncommercial purposes. Noncommercial purposes include academic research, teaching, and testing, but do not include commercial licensing or distribution, development of commercial products, or any other activity which results in commercial gain. You may not redistribute the Research Materials.
  2. You agree to (a) comply with all laws and regulations applicable to your use of the Research Materials under this license, including but not limited to any import or export laws; (b) preserve any copyright or other notices from the Research Materials; and (c) for any Research Materials in object code, not attempt to modify, reverse engineer, or decompile such Research Materials except as permitted by applicable law.
  3. THE RESEARCH MATERIALS ARE PROVIDED “AS IS,” WITHOUT WARRANTY OF ANY KIND, AND YOU ASSUME ALL RISKS ASSOCIATED WITH THEIR USE. IN NO EVENT WILL ANYONE BE LIABLE TO YOU FOR ANY ACTUAL, INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH USE OF THE RESEARCH MATERIALS.

Citation

If you find this Model & Software useful in your research we would kindly ask you to cite:

@inproceedings{hassan_samp_2021,
  title = {Stochastic Scene-Aware Motion Prediction},
  author = {Hassan, Mohamed and Ceylan, Duygu and Villegas, Ruben and Saito, Jun and Yang, Jimei and Zhou, Yi and Black, Michael},
  booktitle = {Proceedings of the International Conference on Computer Vision 2021},
  month = oct,
  year = {2021},
  event_name = {International Conference on Computer Vision 2021},
  event_place = {virtual (originally Montreal, Canada)},
  month_numeric = {10}
}
Owner
Mohamed Hassan
Mohamed Hassan
A PyTorch toolkit for 2D Human Pose Estimation.

PyTorch-Pose PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface

Wei Yang 1.1k Dec 30, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022
PyTorch implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 13.4k Jan 08, 2023
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
Unsupervised Discovery of Object Radiance Fields

Unsupervised Discovery of Object Radiance Fields by Hong-Xing Yu, Leonidas J. Guibas and Jiajun Wu from Stanford University. arXiv link: https://arxiv

Hong-Xing Yu 148 Nov 30, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
A Survey on Deep Learning Technique for Video Segmentation

A Survey on Deep Learning Technique for Video Segmentation A Survey on Deep Learning Technique for Video Segmentation Wenguan Wang, Tianfei Zhou, Fati

Tianfei Zhou 112 Dec 12, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023