PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

Overview

InstaGAN: Instance-aware Image-to-Image Translation

Warning: This repo contains a model which has potential ethical concerns. Remark that the task of jeans<->skirt was a bad application and should not be used in future research. See the twitter thread for the discussion.


PyTorch implementation of "InstaGAN: Instance-aware Image-to-Image Translation" (ICLR 2019). The implementation is based on the official CycleGAN code. Our major contributions are in ./models/insta_gan_model.py and ./models/networks.py.

Getting Started

Installation

  • Clone this repository
git clone https://github.com/sangwoomo/instagan
pip install -r requirements.txt
  • For Conda users, you can use a script ./scripts/conda_deps.sh to install PyTorch and other libraries.

  • Acknowledgment: Installation scripts are from the official CycleGAN code.

Download base datasets

git clone https://github.com/bearpaw/clothing-co-parsing ./datasets/clothing-co-parsing
# Download "LV-MHP-v1" from the link and locate in ./datasets
./datasets/download_coco.sh

Generate two-domain datasets

  • Generate two-domain dataset for experiments:
python ./datasets/generate_ccp_dataset.py --save_root ./datasets/jeans2skirt_ccp --cat1 jeans --cat2 skirt
python ./datasets/generate_mhp_dataset.py --save_root ./datasets/pants2skirt_mhp --cat1 pants --cat2 skirt
python ./datasets/generate_coco_dataset.py --save_root ./datasets/shp2gir_coco --cat1 sheep --cat2 giraffe
  • Note: Generated dataset contains images and corresponding masks, which are located in image folders (e.g., 'trainA') and mask folders (e.g., 'trainA_seg'), respectively. For each image (e.g., '0001.png'), corresponding masks for each instance (e.g., '0001_0.png', '0001_1.png', ...) are provided.

Run experiments

  • Train a model:
python train.py --dataroot ./datasets/jeans2skirt_ccp --model insta_gan --name jeans2skirt_ccp_instagan --loadSizeH 330 --loadSizeW 220 --fineSizeH 300 --fineSizeW 200 --niter 400 --niter_decay 200
python train.py --dataroot ./datasets/pants2skirt_mhp --model insta_gan --name pants2skirt_mhp_instagan --loadSizeH 270 --loadSizeW 180 --fineSizeH 240 --fineSizeW 160
python train.py --dataroot ./datasets/shp2gir_coco --model insta_gan --name shp2gir_coco_instagan --loadSizeH 220 --loadSizeW 220 --fineSizeH 200 --fineSizeW 200
  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097. To see more intermediate results, check out ./checkpoints/experiment_name/web/index.html.

  • For faster experiment, increase batch size and use more gpus:

python train.py --dataroot ./datasets/shp2gir_coco --model insta_gan --name shp2gir_coco_instagan --loadSizeH 220 --loadSizeW 220 --fineSizeH 200 --fineSizeW 200 --batch_size 4 --gpu_ids 0,1,2,3
  • Test the model:
python test.py --dataroot ./datasets/jeans2skirt_ccp --model insta_gan --name jeans2skirt_ccp_instagan --loadSizeH 300 --loadSizeW 200 --fineSizeH 300 --fineSizeW 200
python test.py --dataroot ./datasets/pants2skirt_mhp --model insta_gan --name pants2skirt_mhp_instagan --loadSizeH 240 --loadSizeW 160 --fineSizeH 240 --fineSizeW 160 --ins_per 2 --ins_max 20
python test.py --dataroot ./datasets/shp2gir_coco --model insta_gan --name shp2gir_coco_instagan --loadSizeH 200 --loadSizeW 200 --fineSizeH 200 --fineSizeW 200 --ins_per 2 --ins_max 20
  • The test results will be saved to a html file here: ./results/experiment_name/latest_test/index.html.

Apply a pre-trained model

  • You can download a pre-trained model (pants->skirt and/or sheep->giraffe) from the following Google drive link. Save the pretrained model in ./checkpoints/ directory.

  • We provide samples of two datasets (pants->skirt and sheep->giraffe) in this repository. To test the model:

python test.py --dataroot ./datasets/pants2skirt_mhp --model insta_gan --name pants2skirt_mhp_instagan --loadSizeH 240 --loadSizeW 160 --fineSizeH 240 --fineSizeW 160 --ins_per 2 --ins_max 20 --phase sample --epoch 200
python test.py --dataroot ./datasets/shp2gir_coco --model insta_gan --name shp2gir_coco_instagan --loadSizeH 200 --loadSizeW 200 --fineSizeH 200 --fineSizeW 200 --ins_per 2 --ins_max 20 --phase sample --epoch 200

Results

We provide some translation results of our model. See the link for more translation results.

1. Fashion dataset (pants->skirt)

2. COCO dataset (sheep->giraffe)

3. Results on Google-searched images (pants->skirt)

4. Results on YouTube-searched videos (pants->skirt)

Citation

If you use this code for your research, please cite our papers.

@inproceedings{
    mo2019instagan,
    title={InstaGAN: Instance-aware Image-to-Image Translation},
    author={Sangwoo Mo and Minsu Cho and Jinwoo Shin},
    booktitle={International Conference on Learning Representations},
    year={2019},
    url={https://openreview.net/forum?id=ryxwJhC9YX},
}
Owner
Sangwoo Mo
Ph.D. Student in Machine Learning
Sangwoo Mo
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
Individual Tree Crown classification on WorldView-2 Images using Autoencoder -- Group 9 Weak learners - Final Project (Machine Learning 2020 Course)

Created by Olga Sutyrina, Sarah Elemili, Abduragim Shtanchaev and Artur Bille Individual Tree Crown classification on WorldView-2 Images using Autoenc

2 Dec 08, 2022
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Salesforce 1.3k Dec 28, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in clustering (CVPR2021)

PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering Jang Hyun Cho1, Utkarsh Mall2, Kavita Bala2, Bharath Harihar

Jang Hyun Cho 164 Dec 30, 2022
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting

Official code of APHYNITY Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting (ICLR 2021, Oral) Yuan Yin*, Vincent Le Guen*

Yuan Yin 24 Oct 24, 2022
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
Create Data & AI apps in 20 lines of code with Shimoku

Install with: pip install shimoku-api-python Start with: from os import getenv import shimoku_api_python.client as Shimoku

Shimoku 5 Nov 07, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Idan Achituve 66 Dec 20, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Transform and Tell: Entity-Aware News Image Captioning This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and

Alasdair Tran 85 Dec 13, 2022
The code from the paper Character Transformations for Non-Autoregressive GEC Tagging

Character Transformations for Non-Autoregressive GEC Tagging Milan Straka, Jakub Náplava, Jana Straková Charles University Faculty of Mathematics and

ÚFAL 5 Dec 10, 2022
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023