[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

Overview

GP-UNIT - Official PyTorch Implementation

This repository provides the official PyTorch implementation for the following paper:

Unsupervised Image-to-Image Translation with Generative Prior
Shuai Yang, Liming Jiang, Ziwei Liu and Chen Change Loy
In CVPR 2022.
Project Page | Paper | Supplementary Video

Abstract: Unsupervised image-to-image translation aims to learn the translation between two visual domains without paired data. Despite the recent progress in image translation models, it remains challenging to build mappings between complex domains with drastic visual discrepancies. In this work, we present a novel framework, Generative Prior-guided UNsupervised Image-to-image Translation (GP-UNIT), to improve the overall quality and applicability of the translation algorithm. Our key insight is to leverage the generative prior from pre-trained class-conditional GANs (e.g., BigGAN) to learn rich content correspondences across various domains. We propose a novel coarse-to-fine scheme: we first distill the generative prior to capture a robust coarse-level content representation that can link objects at an abstract semantic level, based on which fine-level content features are adaptively learned for more accurate multi-level content correspondences. Extensive experiments demonstrate the superiority of our versatile framework over state-of-the-art methods in robust, high-quality and diversified translations, even for challenging and distant domains.

Updates

  • [03/2022] Paper and supplementary video are released.
  • [04/2022] Code and dataset are released.
  • [03/2022] This website is created.

Installation

Clone this repo:

git clone https://github.com/williamyang1991/GP-UNIT.git
cd GP-UNIT

Dependencies:

We have tested on:

  • CUDA 10.1
  • PyTorch 1.7.0
  • Pillow 8.0.1; Matplotlib 3.3.3; opencv-python 4.4.0; Faiss 1.7.0; tqdm 4.54.0

All dependencies for defining the environment are provided in environment/gpunit_env.yaml. We recommend running this repository using Anaconda:

conda env create -f ./environment/gpunit_env.yaml

We use CUDA 10.1 so it will install PyTorch 1.7.0 (corresponding to Line 16, Line 113, Line 120, Line 121 of gpunit_env.yaml). Please install PyTorch that matches your own CUDA version following https://pytorch.org/.


(1) Dataset Preparation

Human face dataset, animal face dataset and aristic human face dataset can be downloaded from their official pages. Bird, dog and car datasets can be built from ImageNet with our provided script.

Task Used Dataset
Male←→Female CelebA-HQ: divided into male and female subsets by StarGANv2
Dog←→Cat←→Wild AFHQ provided by StarGANv2
Face←→Cat or Dog CelebA-HQ and AFHQ
Bird←→Dog 4 classes of birds and 4 classes of dogs in ImageNet291. Please refer to dataset preparation for building ImageNet291 from ImageNet
Bird←→Car 4 classes of birds and 4 classes of cars in ImageNet291. Please refer to dataset preparation for building ImageNet291 from ImageNet
Face→MetFace CelebA-HQ and MetFaces

(2) Inference for Latent-Guided and Exemplar-Guided Translation

Inference Notebook


To help users get started, we provide a Jupyter notebook at ./notebooks/inference_playground.ipynb that allows one to visualize the performance of GP-UNIT. The notebook will download the necessary pretrained models and run inference on the images in ./data/.

Web Demo

Try Replicate web demo here Replicate

Pretrained Models

Pretrained models can be downloaded from Google Drive or Baidu Cloud (access code: cvpr):

Task Pretrained Models
Prior Distillation content encoder
Male←→Female generators for male2female and female2male
Dog←→Cat←→Wild generators for dog2cat, cat2dog, dog2wild, wild2dog, cat2wild and wild2cat
Face←→Cat or Dog generators for face2cat, cat2face, dog2face and face2dog
Bird←→Dog generators for bird2dog and dog2bird
Bird←→Car generators for bird2car and car2bird
Face→MetFace generator for face2metface

The saved checkpoints are under the following folder structure:

checkpoint
|--content_encoder.pt     % Content encoder
|--bird2car.pt            % Bird-to-Car translation model
|--bird2dog.pt            % Bird-to-Dog translation model
...

Latent-Guided Translation

Translate a content image to the target domain with randomly sampled latent styles:

python inference.py --generator_path PRETRAINED_GENERATOR_PATH --content_encoder_path PRETRAINED_ENCODER_PATH \ 
                    --content CONTENT_IMAGE_PATH --batch STYLE_NUMBER --device DEVICE

By default, the script will use .\checkpoint\dog2cat.pt as PRETRAINED_GENERATOR_PATH, .\checkpoint\content_encoder.pt as PRETRAINED_ENCODER_PATH, and cuda as DEVICE for using GPU. For running on CPUs, use --device cpu.

Take Dog→Cat as an example, run:

python inference.py --content ./data/afhq/images512x512/test/dog/flickr_dog_000572.jpg --batch 6

Six results translation_flickr_dog_000572_N.jpg (N=0~5) are saved in the folder .\output\. An corresponding overview image translation_flickr_dog_000572_overview.jpg is additionally saved to illustrate the input content image and the six results:

Evaluation Metrics: We use the code of StarGANv2 to calculate FID and Diversity with LPIPS in our paper.

Exemplar-Guided Translation

Translate a content image to the target domain in the style of a style image by additionally specifying --style:

python inference.py --generator_path PRETRAINED_GENERATOR_PATH --content_encoder_path PRETRAINED_ENCODER_PATH \ 
                    --content CONTENT_IMAGE_PATH --style STYLE_IMAGE_PATH --device DEVICE

Take Dog→Cat as an example, run:

python inference.py --content ./data/afhq/images512x512/test/dog/flickr_dog_000572.jpg --style ./data/afhq/images512x512/test/cat/flickr_cat_000418.jpg

The result translation_flickr_dog_000572_to_flickr_cat_000418.jpg is saved in the folder .\output\. An corresponding overview image translation_flickr_dog_000572_to_flickr_cat_000418_overview.jpg is additionally saved to illustrate the input content image, the style image, and the result:

Another example of Cat→Wild, run:

python inference.py --generator_path ./checkpoint/cat2wild.pt --content ./data/afhq/images512x512/test/cat/flickr_cat_000418.jpg --style ./data/afhq/images512x512/test/wild/flickr_wild_001112.jpg

The overview image is as follows:


(3) Training GP-UNIT

Download the supporting models to the ./checkpoint/ folder:

Model Description
content_encoder.pt Our pretrained content encoder which distills BigGAN prior from the synImageNet291 dataset.
model_ir_se50.pth Pretrained IR-SE50 model taken from TreB1eN for ID loss.

Train Image-to-Image Transaltion Network

python train.py --task TASK --batch BATCH_SIZE --iter ITERATIONS \
                --source_paths SPATH1 SPATH2 ... SPATHS --source_num SNUM1 SNUM2 ... SNUMS \
                --target_paths TPATH1 TPATH2 ... TPATHT --target_num TNUM1 TNUM2 ... TNUMT

where SPATH1~SPATHS are paths to S folders containing images from the source domain (e.g., S classes of ImageNet birds), SNUMi is the number of images in SPATHi used for training. TPATHi, TNUMi are similarily defined but for the target domain. By default, BATCH_SIZE=16 and ITERATIONS=75000. If --source_num/--target_num is not specified, all images in the folders are used.

The trained model is saved as ./checkpoint/TASK-ITERATIONS.pt. Intermediate results are saved in ./log/TASK/.

This training does not necessarily lead to the optimal results, which can be further customized with additional command line options:

  • --style_layer (default: 4): the discriminator layer to compute the feature matching loss. We found setting style_layer=5 gives better performance on human faces.
  • --use_allskip (default: False): whether using dynamic skip connections to compute the reconstruction loss. For tasks involving close domains like gender translation, season transfer and face stylization, using use_allskip gives better results.
  • --use_idloss (default: False): whether using the identity loss. For Cat/Dog→Face and Face→MetFace tasks, we use this loss.
  • --not_flip_style (default: False): whether not randomly flipping the style image when extracting the style feature. Random flipping prevents the network to learn position information from the style image.
  • --mitigate_style_bias(default: False): whether resampling style features when training the sampling network. For imbalanced dataset that has minor groups, mitigate_style_bias oversamples those style features that are far from the mean style feature of the whole dataset. This leads to more diversified latent-guided translation at the cost of slight image quality degradation. We use it on CelebA-HQ and AFHQ-related tasks.

Here are some examples:
(Parts of our tasks require the ImageNet291 dataset. Please refer to data preparation)

Male→Female

python train.py --task male2female --source_paths ./data/celeba_hq/train/male --target_paths ./data/celeba_hq/train/female --style_layer 5 --mitigate_style_bias --use_allskip --not_flip_style

Cat→Dog

python train.py --task cat2dog --source_paths ./data/afhq/images512x512/train/cat --source_num 4000 --target_paths ./data/afhq/images512x512/train/dog --target_num 4000 --mitigate_style_bias

Cat→Face

python train.py --task cat2face --source_paths ./data/afhq/images512x512/train/cat --source_num 4000 --target_paths ./data/ImageNet291/train/1001_face/ --style_layer 5 --mitigate_style_bias --not_flip_style --use_idloss

Bird→Car (translating 4 classes of birds to 4 classes of cars)

python train.py --task bird2car --source_paths ./data/ImageNet291/train/10_bird/ ./data/ImageNet291/train/11_bird/ ./data/ImageNet291/train/12_bird/ ./data/ImageNet291/train/13_bird/ --source_num 600 600 600 600 --target_paths ./data/ImageNet291/train/436_vehicle/ ./data/ImageNet291/train/511_vehicle/ ./data/ImageNet291/train/627_vehicle/ ./data/ImageNet291/train/656_vehicle/ --target_num 600 600 600 600

Train Content Encoder of Prior Distillation

We provide our pretrained model content_encoder.pt at Google Drive or Baidu Cloud (access code: cvpr). This model is obtained by:

python prior_distillation.py --unpaired_data_root ./data/ImageNet291/train/ --paired_data_root ./data/synImageNet291/train/ --unpaired_mask_root ./data/ImageNet291_mask/train/ --paired_mask_root ./data/synImageNet291_mask/train/

The training requires ImageNet291 and synImageNet291 datasets. Please refer to data preparation.


Results

Male-to-Female: close domains

male2female

Cat-to-Dog: related domains

cat2dog

Dog-to-Human and Bird-to-Dog: distant domains

dog2human

bird2dog

Bird-to-Car: extremely distant domains for stress testing

bird2car

Citation

If you find this work useful for your research, please consider citing our paper:

@inproceedings{yang2022Unsupervised,
  title={Unsupervised Image-to-Image Translation with Generative Prior},
  author={Yang, Shuai and Jiang, Liming and Liu, Ziwei and Loy, Chen Change},
  booktitle={CVPR},
  year={2022}
}

Acknowledgments

The code is developed based on StarGAN v2, SPADE and Imaginaire.

Owner
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

118 Dec 26, 2022
Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Line-level Handwritten Text Recognition with TensorFlow This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and

Hoàng Tùng Lâm (Linus) 72 May 07, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
Data augmentation for NLP, accepted at EMNLP 2021 Findings

AEDA: An Easier Data Augmentation Technique for Text Classification This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Techni

Akbar Karimi 81 Dec 09, 2022
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
Approaches to modeling terrain and maps in python

topography 🌎 Contains different approaches to modeling terrain and topographic-style maps in python Features Inverse Distance Weighting (IDW) A given

John Gutierrez 1 Aug 10, 2022
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023
AI that generate music

PianoGPT ai that generate music try it here https://share.streamlit.io/annasajkh/pianogpt/main/main.py or here https://huggingface.co/spaces/Annas/Pia

Annas 28 Nov 27, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Gurpreet Singh 1 Jan 01, 2022
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021