"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

Overview

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022)

winner arXiv zhihu mst visitors

Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Zhang, Hanspeter Pfister, Radu Timofte, Luc Van Gool

The first two authors contribute equally to this work

News

  • 2022.04.17 : Our paper has been accepted by CVPRW 2022, code and models have been released. 🚀
  • 2022.04.02 : We win the First place of NTIRE 2022 Challenge on Spectral Reconstruction from RGB. 🏆
480 nm 520 nm 580 nm 660 nm

Abstract: Existing leading methods for spectral reconstruction (SR) focus on designing deeper or wider convolutional neural networks (CNNs) to learn the end-to-end mapping from the RGB image to its hyperspectral image (HSI). These CNN-based methods achieve impressive restoration performance while showing limitations in capturing the long-range dependencies and self-similarity prior. To cope with this problem, we propose a novel Transformer-based method, Multi-stage Spectral-wise Transformer (MST++), for efficient spectral reconstruction. In particular, we employ Spectral-wise Multi-head Self-attention (S-MSA) that is based on the HSI spatially sparse while spectrally self-similar nature to compose the basic unit, Spectral-wise Attention Block (SAB). Then SABs build up Single-stage Spectral-wise Transformer (SST) that exploits a U-shaped structure to extract multi-resolution contextual information. Finally, our MST++, cascaded by several SSTs, progressively improves the reconstruction quality from coarse to fine. Comprehensive experiments show that our MST++ significantly outperforms other state-of-the-art methods. In the NTIRE 2022 Spectral Reconstruction Challenge, our approach won the First place.


Network Architecture

Illustration of MST

Our MST++ is mainly based on our work MST, which is accepted by CVPR 2022.

Comparison with State-of-the-art Methods

This repo is a baseline and toolbox containing 11 image restoration algorithms for Spectral Reconstruction.

We are going to enlarge our model zoo in the future.

Supported algorithms:

comparison_fig

Results on NTIRE 2022 HSI Dataset - Validation

Method Params (M) FLOPS (G) MRAE RMSE PSNR Model Zoo
HSCNN+ 4.65 304.45 0.3814 0.0588 26.36 Google Drive / Baidu Disk
HRNet 31.70 163.81 0.3476 0.0550 26.89 Google Drive / Baidu Disk
EDSR 2.42 158.32 0.3277 0.0437 28.29 Google Drive / Baidu Disk
AWAN 4.04 270.61 0.2500 0.0367 31.22 Google Drive / Baidu Disk
HDNet 2.66 173.81 0.2048 0.0317 32.13 Google Drive / Baidu Disk
HINet 5.21 31.04 0.2032 0.0303 32.51 Google Drive / Baidu Disk
MIRNet 3.75 42.95 0.1890 0.0274 33.29 Google Drive / Baidu Disk
Restormer 15.11 93.77 0.1833 0.0274 33.40 Google Drive / Baidu Disk
MPRNet 3.62 101.59 0.1817 0.0270 33.50 Google Drive / Baidu Disk
MST-L 2.45 32.07 0.1772 0.0256 33.90 Google Drive / Baidu Disk
MST++ 1.62 23.05 0.1645 0.0248 34.32 Google Drive / Baidu Disk

Our MST++ siginificantly outperforms other methods while requiring cheaper Params and FLOPS.

Note: access code for Baidu Disk is mst1.

1. Create Envirement:

  • Python 3 (Recommend to use Anaconda)

  • NVIDIA GPU + CUDA

  • Python packages:

    cd MST-plus-plus
    pip install -r requirements.txt

2. Data Preparation:

  • Download training spectral images (Google Drive / Baidu Disk, code: mst1), training RGB images (Google Drive / Baidu Disk), validation spectral images (Google Drive / Baidu Disk), validation RGB images (Google Drive / Baidu Disk), and testing RGB images (Google Drive / Baidu Disk) from the competition website of NTIRE 2022 Spectral Reconstruction Challenge.

  • Place the training spectral images and validation spectral images to /MST-plus-plus/dataset/Train_Spec/.

  • Place the training RGB images and validation RGB images to /MST-plus-plus/dataset/Train_RGB/.

  • Place the testing RGB images to /MST-plus-plus/dataset/Test_RGB/.

  • Then this repo is collected as the following form:

    |--MST-plus-plus
        |--test_challenge_code
        |--test_develop_code
        |--train_code  
        |--dataset 
            |--Train_Spec
                |--ARAD_1K_0001.mat
                |--ARAD_1K_0002.mat
                : 
                |--ARAD_1K_0950.mat
      	|--Train_RGB
                |--ARAD_1K_0001.jpg
                |--ARAD_1K_0002.jpg
                : 
                |--ARAD_1K_0950.jpg
            |--Test_RGB
                |--ARAD_1K_0951.jpg
                |--ARAD_1K_0952.jpg
                : 
                |--ARAD_1K_1000.jpg
            |--split_txt
                |--train_list.txt
                |--valid_list.txt

3. Evaluation on the Validation Set:

(1) Download the pretrained model zoo from (Google Drive / Baidu Disk, code: mst1) and place them to /MST-plus-plus/test_develop_code/model_zoo/.

(2) Run the following command to test the model on the validation RGB images.

cd /MST-plus-plus/test_develop_code/

# test MST++
python test.py --data_root ../dataset/  --method mst_plus_plus --pretrained_model_path ./model_zoo/mst_plus_plus.pth --outf ./exp/mst_plus_plus/  --gpu_id 0

# test MST-L
python test.py --data_root ../dataset/  --method mst --pretrained_model_path ./model_zoo/mst.pth --outf ./exp/mst/  --gpu_id 0

# test MIRNet
python test.py --data_root ../dataset/  --method mirnet --pretrained_model_path ./model_zoo/mirnet.pth --outf ./exp/mirnet/  --gpu_id 0

# test HINet
python test.py --data_root ../dataset/  --method hinet --pretrained_model_path ./model_zoo/hinet.pth --outf ./exp/hinet/  --gpu_id 0

# test MPRNet
python test.py --data_root ../dataset/  --method mprnet --pretrained_model_path ./model_zoo/mprnet.pth --outf ./exp/mprnet/  --gpu_id 0

# test Restormer
python test.py --data_root ../dataset/  --method restormer --pretrained_model_path ./model_zoo/restormer.pth --outf ./exp/restormer/  --gpu_id 0

# test EDSR
python test.py --data_root ../dataset/  --method edsr --pretrained_model_path ./model_zoo/edsr.pth --outf ./exp/edsr/  --gpu_id 0

# test HDNet
python test.py --data_root ../dataset/  --method hdnet --pretrained_model_path ./model_zoo/hdnet.pth --outf ./exp/hdnet/  --gpu_id 0

# test HRNet
python test.py --data_root ../dataset/  --method hrnet --pretrained_model_path ./model_zoo/hrnet.pth --outf ./exp/hrnet/  --gpu_id 0

# test HSCNN+
python test.py --data_root ../dataset/  --method hscnn_plus --pretrained_model_path ./model_zoo/hscnn_plus.pth --outf ./exp/hscnn_plus/  --gpu_id 0

# test AWAN
python test.py --data_root ../dataset/  --method awan --pretrained_model_path ./model_zoo/awan.pth --outf ./exp/awan/  --gpu_id 0

The results will be saved in /MST-plus-plus/test_develop_code/exp/ in the mat format and the evaluation metric (including MRAE,RMSE,PSNR) will be printed.

4. Evaluation on the Test Set:

(1) Download the pretrained model zoo from (Google Drive / Baidu Disk, code: mst1) and place them to /MST-plus-plus/test_challenge_code/model_zoo/.

(2) Run the following command to test the model on the testing RGB images.

cd /MST-plus-plus/test_challenge_code/

# test MST++
python test.py --data_root ../dataset/  --method mst_plus_plus --pretrained_model_path ./model_zoo/mst_plus_plus.pth --outf ./exp/mst_plus_plus/  --gpu_id 0

# test MST-L
python test.py --data_root ../dataset/  --method mst --pretrained_model_path ./model_zoo/mst.pth --outf ./exp/mst/  --gpu_id 0

# test MIRNet
python test.py --data_root ../dataset/  --method mirnet --pretrained_model_path ./model_zoo/mirnet.pth --outf ./exp/mirnet/  --gpu_id 0

# test HINet
python test.py --data_root ../dataset/  --method hinet --pretrained_model_path ./model_zoo/hinet.pth --outf ./exp/hinet/  --gpu_id 0

# test MPRNet
python test.py --data_root ../dataset/  --method mprnet --pretrained_model_path ./model_zoo/mprnet.pth --outf ./exp/mprnet/  --gpu_id 0

# test Restormer
python test.py --data_root ../dataset/  --method restormer --pretrained_model_path ./model_zoo/restormer.pth --outf ./exp/restormer/  --gpu_id 0

# test EDSR
python test.py --data_root ../dataset/  --method edsr --pretrained_model_path ./model_zoo/edsr.pth --outf ./exp/edsr/  --gpu_id 0

# test HDNet
python test.py --data_root ../dataset/  --method hdnet --pretrained_model_path ./model_zoo/hdnet.pth --outf ./exp/hdnet/  --gpu_id 0

# test HRNet
python test.py --data_root ../dataset/  --method hrnet --pretrained_model_path ./model_zoo/hrnet.pth --outf ./exp/hrnet/  --gpu_id 0

# test HSCNN+
python test.py --data_root ../dataset/  --method hscnn_plus --pretrained_model_path ./model_zoo/hscnn_plus.pth --outf ./exp/hscnn_plus/  --gpu_id 0

The results and submission.zip will be saved in /MST-plus-plus/test_challenge_code/exp/.

5. Training

To train a model, run

cd /MST-plus-plus/train_code/

# train MST++
python train.py --method mst_plus_plus  --batch_size 20 --end_epoch 300 --init_lr 4e-4 --outf ./exp/mst_plus_plus/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train MST-L
python train.py --method mst  --batch_size 20 --end_epoch 300 --init_lr 4e-4 --outf ./exp/mst/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train MIRNet
python train.py --method mirnet  --batch_size 20 --end_epoch 300 --init_lr 4e-4 --outf ./exp/mirnet/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train HINet
python train.py --method hinet  --batch_size 20 --end_epoch 300 --init_lr 2e-4 --outf ./exp/hinet/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train MPRNet
python train.py --method mprnet  --batch_size 20 --end_epoch 300 --init_lr 2e-4 --outf ./exp/mprnet/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train Restormer
python train.py --method restormer  --batch_size 20 --end_epoch 300 --init_lr 2e-4 --outf ./exp/restormer/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train EDSR
python train.py --method edsr  --batch_size 20 --end_epoch 300 --init_lr 1e-4 --outf ./exp/edsr/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train HDNet
python train.py --method hdnet  --batch_size 20 --end_epoch 300 --init_lr 4e-4 --outf ./exp/hdnet/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train HRNet
python train.py --method hrnet  --batch_size 20 --end_epoch 300 --init_lr 1e-4 --outf ./exp/hrnet/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train HSCNN+
python train.py --method hscnn_plus  --batch_size 20 --end_epoch 300 --init_lr 2e-4 --outf ./exp/hscnn_plus/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train AWAN
python train.py --method awan  --batch_size 20 --end_epoch 300 --init_lr 1e-4 --outf ./exp/awan/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

The training log and models will be saved in /MST-plus-plus/train_code/exp/.

6. Prediction:

(1) Download the pretrained model zoo from (Google Drive / Baidu Disk, code: mst1) and place them to /MST-plus-plus/predict_code/model_zoo/.

(2) Run the following command to reconstruct your own RGB image.

cd /MST-plus-plus/predict_code/

# reconstruct by MST++
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg  --method mst_plus_plus --pretrained_model_path ./model_zoo/mst_plus_plus.pth --outf ./exp/mst_plus_plus/  --gpu_id 0

# reconstruct by MST-L
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg  --method mst --pretrained_model_path ./model_zoo/mst.pth --outf ./exp/mst/  --gpu_id 0

# reconstruct by MIRNet
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg  --method mirnet --pretrained_model_path ./model_zoo/mirnet.pth --outf ./exp/mirnet/  --gpu_id 0

# reconstruct by HINet
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg  --method hinet --pretrained_model_path ./model_zoo/hinet.pth --outf ./exp/hinet/  --gpu_id 0

# reconstruct by MPRNet
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg  --method mprnet --pretrained_model_path ./model_zoo/mprnet.pth --outf ./exp/mprnet/  --gpu_id 0

# reconstruct by Restormer
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg  --method restormer --pretrained_model_path ./model_zoo/restormer.pth --outf ./exp/restormer/  --gpu_id 0

# reconstruct by EDSR
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg --method edsr --pretrained_model_path ./model_zoo/edsr.pth --outf ./exp/edsr/  --gpu_id 0

# reconstruct by HDNet
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg  --method hdnet --pretrained_model_path ./model_zoo/hdnet.pth --outf ./exp/hdnet/  --gpu_id 0

# reconstruct by HRNet
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg  --method hrnet --pretrained_model_path ./model_zoo/hrnet.pth --outf ./exp/hrnet/  --gpu_id 0

# reconstruct by HSCNN+
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg  --method hscnn_plus --pretrained_model_path ./model_zoo/hscnn_plus.pth --outf ./exp/hscnn_plus/  --gpu_id 0

You can replace './demo/ARAD_1K_0912.jpg' with your RGB image path. The reconstructed results will be saved in /MST-plus-plus/predict_code/exp/.

Citation

If this repo helps you, please consider citing our works:

@inproceedings{mst,
	title={Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image Reconstruction},
	author={Yuanhao Cai and Jing Lin and Xiaowan Hu and Haoqian Wang and Xin Yuan and Yulun Zhang and Radu Timofte and Luc Van Gool},
	booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
	year={2022}
}

@inproceedings{mst_pp,
  title={MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction},
  author={Yuanhao Cai and Jing Lin and Zudi Lin and Haoqian Wang and Yulun Zhang and Hanspeter Pfister and Radu Timofte and Luc Van Gool},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  year={2022}
}

@inproceedings{hdnet,
	title={HDNet: High-resolution Dual-domain Learning for Spectral Compressive Imaging},
	author={Xiaowan Hu and Yuanhao Cai and Jing Lin and  Haoqian Wang and Xin Yuan and Yulun Zhang and Radu Timofte and Luc Van Gool},
	booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
	year={2022}
}
Owner
Yuanhao Cai
Tsinghua University [email protected]
Yuanhao Cai
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
Facial detection, landmark tracking and expression transfer library for Windows, Linux and Mac

Welcome to the CSIRO Face Analysis SDK. Documentation for the SDK can be found in doc/documentation.html. All code in this SDK is provided according t

Luiz Carlos Vieira 7 Jul 16, 2020
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
render sprites into your desktop environment as shaped windows using GTK

spritegtk render static or animated sprites into your desktop environment as dynamic shaped windows using GTK requires pycairo and PYGobject: pip inst

hermit 20 Oct 27, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the Machine Learning 4 Health Workshop

Detection-aided liver lesion segmentation Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the

Image Processing Group - BarcelonaTECH - UPC 96 Oct 26, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023