A visualization tool to show a TensorFlow's graph like TensorBoard

Overview

tfgraphviz

GitHub license

tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visualization of tensorflow graph on Jupyter Notebook without TensorBoard.

Links

Installation

Use pip to install:

$ pip install graphviz
$ pip install tfgraphviz

The only dependency is Graphviz.

macOS:

$ brew install graphviz

Ubuntu:

$ apt-get install graphviz

Quickstart

import tensorflow as tf
import tfgraphviz as tfg

g = tf.Graph()
with g.as_default():
    a = tf.constant(1, name="a")
    b = tf.constant(2, name="b")
    c = tf.add(a, b, name="add")
tfg.board(g)

https://raw.githubusercontent.com/akimach/tfgraphviz/master/img/graph.jpg

License

This package is distributed under the MIT license.

Author

Akimasa KIMURA

Comments
  • Add Binder support

    Add Binder support

    To get the example working in Binder the only required pip installable package is tensorflow and from apt-get is graphviz. The postBuild will install tfgraphviz from GitHub so that it always gets the master HEAD, so that if there is something broken for a bit on PyPI it won't continue to be a problem until a new release is made.

    opened by matthewfeickert 2
  • added pan and zoom support for jupyter

    added pan and zoom support for jupyter

    Added tfg.jupyter_pan_and_zoom helper to wrap generated SVG object In order to enable pan and zoom functionality in Jupyter:

    tfg.jupyter_pan_and_zoom(tfg.board(graph))
    

    Tested in JupyterLab and Colab.

    opened by vlasenkoalexey 1
  • Extending functionality

    Extending functionality

    • Added proper tooltips
    • Fixed logic to render function names to check op type, not op name
    • Added ability to override functions to create digraph, node and edge like:
    def custom_add_digraph_node(digraph, name, op, attributes=None):
        attributes=[]
        if op is not None and 'PartitionedCall' in op.type:
            attributes.append(('fillcolor', 'blue'))
        tfg.add_digraph_node(digraph, name, op, attributes)
    
    tfg.board(tf_g, depth=10, name_regex=".*", add_digraph_node_func=custom_add_digraph_node)
    
    opened by vlasenkoalexey 1
  • For Python3.x

    For Python3.x

    Fixed to work on Python 3.x:

    • Change IMPLICIT relative imports (from graphviz_wrapper import board) to EXPLICIT relative imports (from .graphviz_wrapper import board).
    • (In addition, ) remove unnecessary imports.

    Checked to work both Python 2.7.x/3.5.x with TensorFlow 1.0.

    opened by antimon2 1
  • UnicodeDecodeError on loading the graph.

    UnicodeDecodeError on loading the graph.

    I am getting the following error. Is unicode in tf variable/scope names not supported?

    <ipython-input-2-b2099ef84663> in load(self)
        143         # sess = tf.Session(graph=tf.get_default_graph())
        144         self.sess.run(self.init)
    --> 145         g = tfg.board(tf.get_default_graph())
        146         g.view()
        147         self.saver.restore(self.sess, model_path)
    
    /Users/activeai/.local/share/virtualenvs/spotter-67LXOL6z/lib/python2.7/site-packages/tfgraphviz/graphviz_wrapper.pyc in board(tfgraph, depth, name, style)
        212     _node_inpt_table, _node_inpt_shape_table = node_input_table(tfgraph, depth=depth)
        213     digraph = add_nodes(_node_table, name=name, style=style)
    --> 214     digraph = add_edges(digraph, _node_inpt_table, _node_inpt_shape_table)
        215     return digraph
    
    /Users/activeai/.local/share/virtualenvs/spotter-67LXOL6z/lib/python2.7/site-packages/tfgraphviz/graphviz_wrapper.pyc in add_edges(digraph, node_inpt_table, node_inpt_shape_table)
        195             else:
        196                 shape = node_inpt_shape_table[ni]
    --> 197                 digraph.edge(ni, node, label=edge_label(shape))
        198     return digraph
        199 
    
    /Users/activeai/.local/share/virtualenvs/spotter-67LXOL6z/lib/python2.7/site-packages/graphviz/dot.pyc in edge(self, tail_name, head_name, label, _attributes, **attrs)
        145         head_name = self._quote_edge(head_name)
        146         attr_list = self._attr_list(label, attrs, _attributes)
    --> 147         line = self._edge % (tail_name, head_name, attr_list)
        148         self.body.append(line)
        149 
    
    UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position 10: ordinal not in range(128)
    
    opened by malarinv 0
Releases(0.0.8)
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio

Google Research 30 Nov 23, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022
This repository is the official implementation of Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models

Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models Link to paper Abstract We study prediction of future out

Rickard Karlsson 2 Aug 19, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022
Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation The reference code of Improving Factual Completeness and C

46 Dec 15, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Torch-template-for-deep-learning Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and

Li Shengyan 270 Dec 31, 2022
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021