A visualization tool to show a TensorFlow's graph like TensorBoard

Overview

tfgraphviz

GitHub license

tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visualization of tensorflow graph on Jupyter Notebook without TensorBoard.

Links

Installation

Use pip to install:

$ pip install graphviz
$ pip install tfgraphviz

The only dependency is Graphviz.

macOS:

$ brew install graphviz

Ubuntu:

$ apt-get install graphviz

Quickstart

import tensorflow as tf
import tfgraphviz as tfg

g = tf.Graph()
with g.as_default():
    a = tf.constant(1, name="a")
    b = tf.constant(2, name="b")
    c = tf.add(a, b, name="add")
tfg.board(g)

https://raw.githubusercontent.com/akimach/tfgraphviz/master/img/graph.jpg

License

This package is distributed under the MIT license.

Author

Akimasa KIMURA

Comments
  • Add Binder support

    Add Binder support

    To get the example working in Binder the only required pip installable package is tensorflow and from apt-get is graphviz. The postBuild will install tfgraphviz from GitHub so that it always gets the master HEAD, so that if there is something broken for a bit on PyPI it won't continue to be a problem until a new release is made.

    opened by matthewfeickert 2
  • added pan and zoom support for jupyter

    added pan and zoom support for jupyter

    Added tfg.jupyter_pan_and_zoom helper to wrap generated SVG object In order to enable pan and zoom functionality in Jupyter:

    tfg.jupyter_pan_and_zoom(tfg.board(graph))
    

    Tested in JupyterLab and Colab.

    opened by vlasenkoalexey 1
  • Extending functionality

    Extending functionality

    • Added proper tooltips
    • Fixed logic to render function names to check op type, not op name
    • Added ability to override functions to create digraph, node and edge like:
    def custom_add_digraph_node(digraph, name, op, attributes=None):
        attributes=[]
        if op is not None and 'PartitionedCall' in op.type:
            attributes.append(('fillcolor', 'blue'))
        tfg.add_digraph_node(digraph, name, op, attributes)
    
    tfg.board(tf_g, depth=10, name_regex=".*", add_digraph_node_func=custom_add_digraph_node)
    
    opened by vlasenkoalexey 1
  • For Python3.x

    For Python3.x

    Fixed to work on Python 3.x:

    • Change IMPLICIT relative imports (from graphviz_wrapper import board) to EXPLICIT relative imports (from .graphviz_wrapper import board).
    • (In addition, ) remove unnecessary imports.

    Checked to work both Python 2.7.x/3.5.x with TensorFlow 1.0.

    opened by antimon2 1
  • UnicodeDecodeError on loading the graph.

    UnicodeDecodeError on loading the graph.

    I am getting the following error. Is unicode in tf variable/scope names not supported?

    <ipython-input-2-b2099ef84663> in load(self)
        143         # sess = tf.Session(graph=tf.get_default_graph())
        144         self.sess.run(self.init)
    --> 145         g = tfg.board(tf.get_default_graph())
        146         g.view()
        147         self.saver.restore(self.sess, model_path)
    
    /Users/activeai/.local/share/virtualenvs/spotter-67LXOL6z/lib/python2.7/site-packages/tfgraphviz/graphviz_wrapper.pyc in board(tfgraph, depth, name, style)
        212     _node_inpt_table, _node_inpt_shape_table = node_input_table(tfgraph, depth=depth)
        213     digraph = add_nodes(_node_table, name=name, style=style)
    --> 214     digraph = add_edges(digraph, _node_inpt_table, _node_inpt_shape_table)
        215     return digraph
    
    /Users/activeai/.local/share/virtualenvs/spotter-67LXOL6z/lib/python2.7/site-packages/tfgraphviz/graphviz_wrapper.pyc in add_edges(digraph, node_inpt_table, node_inpt_shape_table)
        195             else:
        196                 shape = node_inpt_shape_table[ni]
    --> 197                 digraph.edge(ni, node, label=edge_label(shape))
        198     return digraph
        199 
    
    /Users/activeai/.local/share/virtualenvs/spotter-67LXOL6z/lib/python2.7/site-packages/graphviz/dot.pyc in edge(self, tail_name, head_name, label, _attributes, **attrs)
        145         head_name = self._quote_edge(head_name)
        146         attr_list = self._attr_list(label, attrs, _attributes)
    --> 147         line = self._edge % (tail_name, head_name, attr_list)
        148         self.body.append(line)
        149 
    
    UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position 10: ordinal not in range(128)
    
    opened by malarinv 0
Releases(0.0.8)
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
MohammadReza Sharifi 27 Dec 13, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Nicolas 304 Dec 28, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Idan Achituve 66 Dec 20, 2022
DCGAN-tensorflow - A tensorflow implementation of Deep Convolutional Generative Adversarial Networks

DCGAN in Tensorflow Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networ

Taehoon Kim 7.1k Dec 29, 2022
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022