TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

Overview
Comments
  • abs_depth_error

    abs_depth_error

    I find ABS_DEPTH_ERROR is close to 6 or even 7 during training, is this normal? Here are the training results for Epoch 5. Is it because of the slow convergence?

    avg_test_scalars: {'loss': 4.360309665948113, 'depth_loss': 6.535046514014081, 'entropy_loss': 4.360309665948113, 'abs_depth_error': 6.899323051878795, 'thres2mm_error': 0.16829867261163733, 'thres4mm_error': 0.10954744909229193, 'thres8mm_error': 0.07844322964626443, 'thres14mm_error': 0.06323695212957076, 'thres20mm_error': 0.055751020700780536, 'thres2mm_abserror': 0.597563438798779, 'thres4mm_abserror': 2.7356186663791666, 'thres8mm_abserror': 5.608324628466483, 'thres14mm_abserror': 10.510002394554125, 'thres20mm_abserror': 16.67409769420184, 'thres>20mm_abserror': 78.15814284054947}

    opened by zhang-snowy 7
  • About the fusion setting in DTU

    About the fusion setting in DTU

    Thank you for your great contribution. The script use the gipuma as the fusion method with num_consistent=5prob_threshold=0.05disp_threshold=0.25. However, it produces point cloud results with only 1/2 points compared with the point cloud results you provide in DTU, leading to a much poorer result in DTU. Is there any setting wrong in the script? Or because it does not use the dynamic fusion method described in the paper. Could you provide the dynamic fusion process in DTU?

    opened by DIVE128 5
  • Testing on TnT advanced dataset

    Testing on TnT advanced dataset

    Hi, thank you for sharing this great work!

    I'm try to test transmvsnet on tnt advanced dataset, but meet some problem. My test environment is ubuntu16.04 with cuda11.3 and pytorch 1.10.

    The first thing is that there is no cams_1 folder under tnt dataset, is it a revised version of original cams folder or you just changed the folder name?

    I just changed the folder name, then run scripts/test_tnt.sh, but I find the speed is rather slow, about 10 seconds on 1080ti for a image (1056 x 1920), is it normal?

    Finally I get the fused point cloud, but the cloud is meaningless, I checked the depth map and confidence map, all of the data are very strange, apperantly not right.

    Can you help me with these problems?

    opened by CanCanZeng 4
  • Some implement details about the paper

    Some implement details about the paper

    Firstly thanks for your paper and I'm looking forward to your open-sourced code.

    And I have some questions about your paper: (Hopefully you can reply, thanks in advance!) (1) In section 4.2, "The model is trained with Adam for 10 epochs with an initial learning rate of 0.001, which decays by a factor of 0.5 respectively after 6, 8, and 12 epochs." I'm confused about the epochs. And I also noticed that this training strategy is different from CasMVSNet. Did you try the training strategy in CasMVSNet? What's the difference? (2) In Table4(b), focal loss(what is the value of \gamma?) suppresses CE loss by 0.06. However, In Table4(e) and Table 6, we infer that the best model use CE loss(FL with \gamma=0). My question is: did you keep Focal loss \gamma unchanged in the Ablation study in Table4? If not, how \gamma changes? Could you elaborate?

    Really appreciate it!

    opened by JeffWang987 4
  • source code

    source code

    Hi, @Lxiangyue Thank you for the nice paper.

    It's been over a month since authors announced that the code will be available. May I know when the code will be released? (or whether it will not be released)

    opened by Ys-Jung77 3
  • Testing on my own dataset

    Testing on my own dataset

    Hi thanks for your interesting work. I tested your code on one of the DTU dataset (Moda). as you can see from the following image, the results are quite well. image

    but I got a very bad result, when i tried to tested on one of my dataset (see the following pic) using your pretrained model (model_dtu). Now, my question is that do you thing that the object is too complicated and different compared to DTU dataset and it is all we can get from the pretrain model without retraining it? is it possible to improve by changing the input parameters? In general, would you please share your opinion about this result? image

    opened by AliKaramiFBK 1
  • generate dense 3D point cloud

    generate dense 3D point cloud

    thanks for your greate work I just tried to do a test on DTU testing dataset I got the depth map for each view but I got a bit confised on how to generate 3D point cloud using your code would you please let me know Best

    opened by AliKaramiFBK 1
  • GPU memory consumption

    GPU memory consumption

    Hi! Thanks for your excellent work! When I tested on the DTU dataset with pretrained model, the gpu memory consumption is 4439MB, but the paper gives 3778MB.

    I do not know where the problem is.

    opened by JianfeiJ 0
  • Using my own data

    Using my own data

    If I have the intrinsic matrics and extrinsic matrics of cameras, which means I don't need to run SFM in COLMAP, how should I struct my data to train the model?

    opened by PaperDollssss 2
  • TnT dataset results

    TnT dataset results

    Thanks for the great job. I follow the instruction and upload the reconstruction result of tnt but find the F-score=60.29, and I find the point cloud sizes are a larger than the upload ones. Whether the reconstructed point cloud use the param settting of test_tnt.sh or it should be tuned manually? :smile:

    opened by CC9310 1
  • TankAndTemple Test

    TankAndTemple Test

    Hi, 我测试了TAT数据集中的Family,使用的是默认脚本test_tnt.sh,采用normal融合,最近仅得到13MB点云文件。经检查发现生成的mask文件夹中的_geo.png都是大部分区域黑色图片,从而最后得到的 final.png的大部分区域都是无效的。geometric consistency阈值分别是默认的0.01和1。不知道您这边是否有一样的问题?

    opened by lt-xiang 13
  • Why is there a big gap between the reproducing results and the paper results?

    Why is there a big gap between the reproducing results and the paper results?

    I have tried the pre-trained model you offered on DTU dataset. But the results I got are mean_acc=0.299, mean_comp=0.385, overall=0.342, and the results you presented in the paper are mean_acc=0.321, mean_comp=0.289, overall=0.305.

    I do not know where the problem is.

    opened by cainsmile 14
Releases(T&T_ply)
Owner
旷视研究院 3D 组
旷视科技(Face++)研究院 3D 组(原 SLAM 组)
旷视研究院 3D 组
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Gyeongsik Moon 29 Sep 24, 2022
Docker containers of baseline agents for the Crafter environment

Crafter Baselines This repository contains Docker containers for running various baselines on the Crafter environment. Reward Agents DreamerV2 based o

Danijar Hafner 17 Sep 25, 2022
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

213 Jan 02, 2023
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021