Pyramid addon for OpenAPI3 validation of requests and responses.

Overview

Validate Pyramid views against an OpenAPI 3.0 document

CircleCI for pyramid_openapi3 (master branch) Test coverage (master branch) Test coverage (master branch) latest version of pyramid_openapi3 on PyPI Supported Python versions License: MIT Built by these great folks! Talk to us in #pyramid on Freenode IRC

Peace of Mind

The reason this package exists is to give you peace of mind when providing a RESTful API. Instead of chasing down preventable bugs and saying sorry to consumers, you can focus on more important things in life.

  • Your API documentation is never out-of-date, since it is generated out of the API document that you write.
  • The documentation comes with try-it-out examples for every endpoint in your API. You don't have to provide (and maintain) curl commands to showcase how your API works. Users can try it themselves, right in their browsers.
  • Your API document is always valid, since your Pyramid app won't even start if the document does not comply with the OpenAPI 3.0 specification.
  • Automatic request payload validation and sanitization. Your views do not require any code for validation and input sanitation. Your view code only deals with business logic. Tons of tests never need to be written since every request, and its payload, is validated against your API document before it reaches your view code.
  • Your API responses always match your API document. Every response from your view is validated against your document and a 500 Internal Server Error is returned if the response does not exactly match what your document says the output of a certain API endpoint should be. This decreases the effects of Hyrum's Law.
  • A single source of truth. Because of the checks outlined above, you can be sure that whatever your API document says is in fact what is going on in reality. You have a single source of truth to consult when asking an API related question, such as "Remind me again, which fields are returned by the endpoint /user/info?".
  • Based on Pyramid, a mature Python Web framework. Companies such as Mozilla, Yelp, RollBar and SurveyMonkey trust Pyramid, and the new pypi.org runs on Pyramid, too. Pyramid is thoroughly tested and documented, providing flexibility, performance, and a large ecosystem of high-quality add-ons.

Building Robust APIs

Features

Getting started

  1. Declare pyramid_openapi3 as a dependency in your Pyramid project.

  2. Include the following lines:

config.include("pyramid_openapi3")
config.pyramid_openapi3_spec('openapi.yaml', route='/api/v1/openapi.yaml')
config.pyramid_openapi3_add_explorer(route='/api/v1/')
  1. Use the openapi view predicate to enable request/response validation:
@view_config(route_name="foobar", openapi=True, renderer='json')
def myview(request):
    return request.openapi_validated.parameters

For requests, request.openapi_validated is available with two fields: parameters and body. For responses, if the payload does not match the API document, an exception is raised.

Advanced configuration

Relative File References in Spec

A feature introduced in OpenAPI3 is the ability to use $ref links to external files (https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#referenceObject).

To use this, you must ensure that you have all of your spec files in a given directory (ensure that you do not have any code in this directory as all the files in it are exposed as static files), then replace the pyramid_openapi3_spec call that you did in Getting Started with the following:

config.pyramid_openapi3_spec_directory('path/to/openapi.yaml', route='/api/v1/spec')

Some notes:

  • Do not set the route of your pyramid_openapi3_spec_directory to the same value as the route of pyramid_openapi3_add_explorer.
  • The route that you set for pyramid_openapi3_spec_directory should not contain any file extensions, as this becomes the root for all of the files in your specified filepath.
  • You cannot use pyramid_openapi3_spec_directory and pyramid_openapi3_spec in the same app.

Endpoints / Request / Response Validation

Provided with pyramid_openapi3 are a few validation features:

  • incoming request validation (i.e., what a client sends to your app)
  • outgoing response validation (i.e., what your app sends to a client)
  • endpoint validation (i.e., your app registers routes for all defined API endpoints)

These features are enabled as a default, but you can disable them if you need to:

config.registry.settings["pyramid_openapi3.enable_endpoint_validation"] = False
config.registry.settings["pyramid_openapi3.enable_request_validation"] = False
config.registry.settings["pyramid_openapi3.enable_response_validation"] = False

Warning: Disabling request validation will result in request.openapi_validated no longer being available to use.

Register Pyramid's Routes

You can register routes in your pyramid application. First, write the x-pyramid-route-name extension in the PathItem of the OpenAPI schema.

paths:
  /foo:
    x-pyramid-route-name: foo_route
    get:
      responses:
        200:
          description: GET foo

Then put the config directive pyramid_openapi3_register_routes in the app_factory of your application.

config.pyramid_openapi3_register_routes()

This means is equals to

config.add_route("foo_route", pattern="/foo")

Demo / Examples

There are three examples provided with this package:

Both examples come with tests that exhibit pyramid_openapi's error handling and validation capabilities.

A fully built-out app, with 100% test coverage, providing a RealWorld.io API is available at niteoweb/pyramid-realworld-example-app. It is a Heroku-deployable Pyramid app that provides an API for a Medium.com-like social app. You are encouraged to use it as a scaffold for your next project.

Design defense

The authors of pyramid_openapi3 believe that the approach of validating a manually-written API document is superior to the approach of generating the API document from Python code. Here are the reasons:

  1. Both generation and validation against a document are lossy processes. The underlying libraries running the generation/validation will always have something missing. Either a feature from the latest OpenAPI specification, or an implementation bug. Having to fork the underlying library in order to generate the part of your API document that might only be needed for the frontend is unfortunate.

    Validation on the other hand allows one to skip parts of validation that are not supported yet, and not block a team from shipping the document.

  2. The validation approach does sacrifice DRY-ness, and one has to write the API document and then the (view) code in Pyramid. It feels a bit redundant at first. However, this provides a clear separation between the intent and the implementation.

  3. The generation approach has the drawback of having to write Python code even for parts of the API document that the Pyramid backend does not handle, as it might be handled by a different system, or be specific only to documentation or only to the client side of the API. This bloats your Pyramid codebase with code that does not belong there.

Running tests

You need to have pipenv and Python 3.7, 3.8, or 3.9 installed on your machine. Then you can run:

$ make tests

Related packages

These packages tackle the same problem-space:

  • pyramid_oas3 seems to do things very similarly to pyramid_openapi3, but the documentation is not in English and we sadly can't fully understand what it does by just reading the code.
  • pyramid_swagger does a similar thing, but for Swagger 2.0 documents.
  • connexion takes the same "write spec first, code second" approach as pyramid_openapi3, but is based on Flask.
  • bottle-swagger takes the same "write spec first, code second" approach too, but is based on Bottle.
  • pyramid_apispec uses generation with help of apispec and the marshmallow validation library. See above why we prefer validation instead of generation.

Deprecation policy

We do our best to follow the rules below.

  • Support the latest few releases of Python, currently Python 3.7, 3.8, and 3.9.
  • Support the latest few releases of Pyramid, currently 1.10.7 through 2.0.
  • Support the latest few releases of openapi-core, currently 0.13.4 through 0.13.8.
  • See Pipfile.lock for a frozen-in-time known-good-set of all dependencies.

Use in the wild

A couple of projects that use pyramid_openapi3 in production:

Owner
Pylons Project
The Pylons Project is composed of a disparate group of project leaders with experience going back to the very start of Python web frameworks.
Pylons Project
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
A Broader Picture of Random-walk Based Graph Embedding

Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa

Zexi Huang 23 Dec 13, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Ravn Tech, Inc. 165 Nov 04, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Jan 01, 2023
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

Dongkwan Kim 127 Dec 28, 2022
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021

NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree

35 Jan 03, 2023
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Testability-Aware Low Power Controller Design with Evolutionary Learning, ITC2021

Testability-Aware Low Power Controller Design with Evolutionary Learning This repo contains the source code of Testability-Aware Low Power Controller

Lee Man 1 Dec 26, 2021
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
Programming with Neural Surrogates of Programs

Programming with Neural Surrogates of Programs

0 Dec 12, 2021
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022