Pyramid addon for OpenAPI3 validation of requests and responses.

Overview

Validate Pyramid views against an OpenAPI 3.0 document

CircleCI for pyramid_openapi3 (master branch) Test coverage (master branch) Test coverage (master branch) latest version of pyramid_openapi3 on PyPI Supported Python versions License: MIT Built by these great folks! Talk to us in #pyramid on Freenode IRC

Peace of Mind

The reason this package exists is to give you peace of mind when providing a RESTful API. Instead of chasing down preventable bugs and saying sorry to consumers, you can focus on more important things in life.

  • Your API documentation is never out-of-date, since it is generated out of the API document that you write.
  • The documentation comes with try-it-out examples for every endpoint in your API. You don't have to provide (and maintain) curl commands to showcase how your API works. Users can try it themselves, right in their browsers.
  • Your API document is always valid, since your Pyramid app won't even start if the document does not comply with the OpenAPI 3.0 specification.
  • Automatic request payload validation and sanitization. Your views do not require any code for validation and input sanitation. Your view code only deals with business logic. Tons of tests never need to be written since every request, and its payload, is validated against your API document before it reaches your view code.
  • Your API responses always match your API document. Every response from your view is validated against your document and a 500 Internal Server Error is returned if the response does not exactly match what your document says the output of a certain API endpoint should be. This decreases the effects of Hyrum's Law.
  • A single source of truth. Because of the checks outlined above, you can be sure that whatever your API document says is in fact what is going on in reality. You have a single source of truth to consult when asking an API related question, such as "Remind me again, which fields are returned by the endpoint /user/info?".
  • Based on Pyramid, a mature Python Web framework. Companies such as Mozilla, Yelp, RollBar and SurveyMonkey trust Pyramid, and the new pypi.org runs on Pyramid, too. Pyramid is thoroughly tested and documented, providing flexibility, performance, and a large ecosystem of high-quality add-ons.

Building Robust APIs

Features

Getting started

  1. Declare pyramid_openapi3 as a dependency in your Pyramid project.

  2. Include the following lines:

config.include("pyramid_openapi3")
config.pyramid_openapi3_spec('openapi.yaml', route='/api/v1/openapi.yaml')
config.pyramid_openapi3_add_explorer(route='/api/v1/')
  1. Use the openapi view predicate to enable request/response validation:
@view_config(route_name="foobar", openapi=True, renderer='json')
def myview(request):
    return request.openapi_validated.parameters

For requests, request.openapi_validated is available with two fields: parameters and body. For responses, if the payload does not match the API document, an exception is raised.

Advanced configuration

Relative File References in Spec

A feature introduced in OpenAPI3 is the ability to use $ref links to external files (https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#referenceObject).

To use this, you must ensure that you have all of your spec files in a given directory (ensure that you do not have any code in this directory as all the files in it are exposed as static files), then replace the pyramid_openapi3_spec call that you did in Getting Started with the following:

config.pyramid_openapi3_spec_directory('path/to/openapi.yaml', route='/api/v1/spec')

Some notes:

  • Do not set the route of your pyramid_openapi3_spec_directory to the same value as the route of pyramid_openapi3_add_explorer.
  • The route that you set for pyramid_openapi3_spec_directory should not contain any file extensions, as this becomes the root for all of the files in your specified filepath.
  • You cannot use pyramid_openapi3_spec_directory and pyramid_openapi3_spec in the same app.

Endpoints / Request / Response Validation

Provided with pyramid_openapi3 are a few validation features:

  • incoming request validation (i.e., what a client sends to your app)
  • outgoing response validation (i.e., what your app sends to a client)
  • endpoint validation (i.e., your app registers routes for all defined API endpoints)

These features are enabled as a default, but you can disable them if you need to:

config.registry.settings["pyramid_openapi3.enable_endpoint_validation"] = False
config.registry.settings["pyramid_openapi3.enable_request_validation"] = False
config.registry.settings["pyramid_openapi3.enable_response_validation"] = False

Warning: Disabling request validation will result in request.openapi_validated no longer being available to use.

Register Pyramid's Routes

You can register routes in your pyramid application. First, write the x-pyramid-route-name extension in the PathItem of the OpenAPI schema.

paths:
  /foo:
    x-pyramid-route-name: foo_route
    get:
      responses:
        200:
          description: GET foo

Then put the config directive pyramid_openapi3_register_routes in the app_factory of your application.

config.pyramid_openapi3_register_routes()

This means is equals to

config.add_route("foo_route", pattern="/foo")

Demo / Examples

There are three examples provided with this package:

Both examples come with tests that exhibit pyramid_openapi's error handling and validation capabilities.

A fully built-out app, with 100% test coverage, providing a RealWorld.io API is available at niteoweb/pyramid-realworld-example-app. It is a Heroku-deployable Pyramid app that provides an API for a Medium.com-like social app. You are encouraged to use it as a scaffold for your next project.

Design defense

The authors of pyramid_openapi3 believe that the approach of validating a manually-written API document is superior to the approach of generating the API document from Python code. Here are the reasons:

  1. Both generation and validation against a document are lossy processes. The underlying libraries running the generation/validation will always have something missing. Either a feature from the latest OpenAPI specification, or an implementation bug. Having to fork the underlying library in order to generate the part of your API document that might only be needed for the frontend is unfortunate.

    Validation on the other hand allows one to skip parts of validation that are not supported yet, and not block a team from shipping the document.

  2. The validation approach does sacrifice DRY-ness, and one has to write the API document and then the (view) code in Pyramid. It feels a bit redundant at first. However, this provides a clear separation between the intent and the implementation.

  3. The generation approach has the drawback of having to write Python code even for parts of the API document that the Pyramid backend does not handle, as it might be handled by a different system, or be specific only to documentation or only to the client side of the API. This bloats your Pyramid codebase with code that does not belong there.

Running tests

You need to have pipenv and Python 3.7, 3.8, or 3.9 installed on your machine. Then you can run:

$ make tests

Related packages

These packages tackle the same problem-space:

  • pyramid_oas3 seems to do things very similarly to pyramid_openapi3, but the documentation is not in English and we sadly can't fully understand what it does by just reading the code.
  • pyramid_swagger does a similar thing, but for Swagger 2.0 documents.
  • connexion takes the same "write spec first, code second" approach as pyramid_openapi3, but is based on Flask.
  • bottle-swagger takes the same "write spec first, code second" approach too, but is based on Bottle.
  • pyramid_apispec uses generation with help of apispec and the marshmallow validation library. See above why we prefer validation instead of generation.

Deprecation policy

We do our best to follow the rules below.

  • Support the latest few releases of Python, currently Python 3.7, 3.8, and 3.9.
  • Support the latest few releases of Pyramid, currently 1.10.7 through 2.0.
  • Support the latest few releases of openapi-core, currently 0.13.4 through 0.13.8.
  • See Pipfile.lock for a frozen-in-time known-good-set of all dependencies.

Use in the wild

A couple of projects that use pyramid_openapi3 in production:

Owner
Pylons Project
The Pylons Project is composed of a disparate group of project leaders with experience going back to the very start of Python web frameworks.
Pylons Project
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
CVPR 2022 "Online Convolutional Re-parameterization"

OREPA: Online Convolutional Re-parameterization This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re

Mu Hu 121 Dec 21, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
Simple, but essential Bayesian optimization package

BayesO: A Bayesian optimization framework in Python Simple, but essential Bayesian optimization package. http://bayeso.org Online documentation Instal

Jungtaek Kim 74 Dec 05, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
Install alphafold on the local machine, get out of docker.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

Kui Xu 73 Dec 13, 2022
ReLoss - Official implementation for paper "Relational Surrogate Loss Learning" ICLR 2022

Relational Surrogate Loss Learning (ReLoss) Official implementation for paper "R

Tao Huang 31 Nov 22, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022