OSLO: Open Source framework for Large-scale transformer Optimization

Related tags

Deep Learningoslo
Overview


O S L O

Open Source framework for Large-scale transformer Optimization

GitHub release Apache 2.0 Docs Issues



What's New:

What is OSLO about?

OSLO is a framework that provides various GPU based optimization features for large-scale modeling. As of 2021, the Hugging Face Transformers is being considered de facto standard. However, it does not best fit the purposes of large-scale modeling yet. This is where OSLO comes in. OSLO is designed to make it easier to train large models with the Transformers. For example, you can fine-tune GPTJ on the Hugging Face Model Hub without many extra efforts using OSLO. Currently, GPT2, GPTNeo, and GPTJ are supported, but we plan to support more soon.

Installation

OSLO can be easily installed using the pip package manager. All the dependencies such as torch, transformers, dacite, ninja and pybind11 should be installed automatically with the following command. Be careful that the 'core' in the PyPI project name.

pip install oslo-core

Some of features rely on the C++ language. So we provide an option, CPP_AVAILABLE, to decide whether or not you install them.

  • If the C++ is available:
CPP_AVAILABLE=1 pip install oslo-core
  • If the C++ is not available:
CPP_AVAILABLE=0 pip install oslo-core

Note that the default value of CPP_AVAILABLE is 0 in Windows and 1 in Linux.

Key Features

import deepspeed 
from oslo import GPTJForCausalLM

# 1. 3D Parallelism
model = GPTJForCausalLM.from_pretrained_with_parallel(
    "EleutherAI/gpt-j-6B", tensor_parallel_size=2, pipeline_parallel_size=2,
)

# 2. Kernel Fusion
model = model.fuse()

# 3. DeepSpeed Support
engines = deepspeed.initialize(
    model=model.gpu_modules(), model_parameters=model.gpu_paramters(), ...,
)

# 4. Data Processing
from oslo import (
    DatasetPreprocessor, 
    DatasetBlender, 
    DatasetForCausalLM, 
    ...    
)

OSLO offers the following features.

  • 3D Parallelism: The state-of-the-art technique for training a large-scale model with multiple GPUs.
  • Kernel Fusion: A GPU optimization method to increase training and inference speed.
  • DeepSpeed Support: We support DeepSpeed which provides ZeRO data parallelism.
  • Data Processing: Various utilities for efficient large-scale data processing.

See USAGE.md to learn how to use them.

Administrative Notes

Citing OSLO

If you find our work useful, please consider citing:

@misc{oslo,
  author       = {Ko, Hyunwoong and Kim, Soohwan and Park, Kyubyong},
  title        = {OSLO: Open Source framework for Large-scale transformer Optimization},
  howpublished = {\url{https://github.com/tunib-ai/oslo}},
  year         = {2021},
}

Licensing

The Code of the OSLO project is licensed under the terms of the Apache License 2.0.

Copyright 2021 TUNiB Inc. http://www.tunib.ai All Rights Reserved.

Acknowledgements

The OSLO project is built with GPU support from the AICA (Artificial Intelligence Industry Cluster Agency).

Comments
  • [WIP] Implement ZeRO Stage 3 (FSDP)

    [WIP] Implement ZeRO Stage 3 (FSDP)

    Title

    • Implement ZeRO Stage 3 (FullyShardedDataParallel)

    Description

    • [x] Add reduce_scatter_bucketer.py
      • [x] Add test_reduce_scatter_bucketer.py
    • [x] Add flatten_params_wrapper.py
      • [x] Add test_flatten_params_wrapper.py
    • [x] Add containers.py
      • [x] Add test_containers.py
    • [x] Add parallel.py
      • [x] Add test_parallel.py
    • [x] Add fsdp_optim_utils.py
    • [x] Update fsdp.py
    • [x] Add auto_wrap.py
      • [x] Add test_wrap.py
    opened by jinok2im 9
  • FusedAdam & CPUAdam

    FusedAdam & CPUAdam

    Title

    -FusedAdam & CPUAdam

    Description

    • Implement FusedAdam & CPUAdam

    Tasks

    • [x] Implement FusedAdam
    • [x] implement CPUAdam
    • [x] Test FusedAdam
    • [x] Test CPUAdam
    • [x] Test FusedSclaeMaskSoftmax (Name changed)
    opened by cozytk 6
  • [WIP] Add data processing modules referring to the lassl

    [WIP] Add data processing modules referring to the lassl

    Title

    • add data processing modules referring to the lassl

    Description

    • brought data processing functions that fit gpt2 with reference to lassl

    Linked Issues

    • None
    opened by gimmaru 6
  • Implementation of Sequential Parallelism

    Implementation of Sequential Parallelism

    SP with DP implementation

    • Implemented SP wrapper with DP

    Description

    • SequenceDataParallel works like native torch DDP with SP
    • you can find details in the file oslo/tests/torch/nn/parallal/data_parallel/test_sp.py
    opened by ohwi 5
  • Update data collators and Add models

    Update data collators and Add models

    Title

    • Update data collators and Add models

    Description

    • Updated data collators to utilize sequence parallel in Oslo trainer
    • Add models by referring to the transformers library
    opened by gimmaru 3
  • Implement Expert Parallel and Test for Initialization and Forward Pass

    Implement Expert Parallel and Test for Initialization and Forward Pass

    Title

    • Implement Expert Parallel and Test for Initialization and Forward Pass

    Description

    • Implement Wrapper, Modules and Features for Expert Parallel
    • Implement mapping_utils._ParallelMappingForHuggingFace as super class of _TensorParallelMappingForHuggingFace and _ExpertParallelMappingForHuggingFace
    • Test initialization and forward pass for expert parallel
    opened by scsc0511 3
  • Integrate Sequence Parallelism branches

    Integrate Sequence Parallelism branches

    Title

    • Sequence parallelism (feat. @reniew, @ohwi, @l-yohai)

    Description

    • This PR is Integration of SP current version. But there is something wrong.
    • We will fix the bugs for the coming week and write test modules according to the SP design.
    • It did not include the contents of the branch that worked for the test.
    opened by l-yohai 3
  • implement tp-3d layers, wrapper, test codes and refactor all tp test codes and layers

    implement tp-3d layers, wrapper, test codes and refactor all tp test codes and layers

    • implement tp-3d wrapper
    • rank transpose problem (tensor_3d_input_rank <-> tensor_3d_output_rank) by implementing ranking transpose function.
    • revise tp-3d layers for huggingface compatibility
    • implement tp-3d test codes
    • refactor all tp test codes
    • unify format across all tensor parallel modules.
    opened by bzantium 2
  • Refactoring MultiheadAttention with todo anchors

    Refactoring MultiheadAttention with todo anchors

    Title

    • Refactoring MultiheadAttention with todo anchors

    Description

    • Refactoring oslo/torch/nn/modules/functional/multi_head_attention_forward.py.
    • Remove unnecessary or unintended code and clean up annotations.
    • Unify return format and the variable name with native torch.

    Additionally, I need to test attention_mask. However, it seems that it can proceed with this part after FusedScaleMaskSoftmax is integrated.

    cc. @hyunwoongko @ohwi

    opened by l-yohai 2
  • Add tp-1d layers testing

    Add tp-1d layers testing

    • Add testing for tp-1d layers: col_linear, row_linear, vocab_embedding_1d
    • modify number to integer variable like summa_dim, world_size cc: @hyunwoongko
    opened by bzantium 2
  • [WIP] add test code of sp training

    [WIP] add test code of sp training

    Title

    • SP Model Test Code

    Description

    Writing a test code to verify that the gradient and loss values of the model are the same when the sequence parallelism is applied.

    • WIP - merging @ohwi 's test code comparing SP of ColossalAI and simple learning model.
    opened by l-yohai 2
Releases(v2.0.2)
  • v2.0.2(Aug 25, 2022)

  • v2.0.1(Feb 20, 2022)

  • v2.0.0(Feb 14, 2022)

    Official release of OSLO 2.0.0 🎉🎉

    This version of OSLO provides the following features:

    • Tensor model parallelism
    • Efficient activation checkpointing
    • Kernel fusion

    We plan to add the pipeline model parallelism and the ZeRO optimization in the next versions.


    New feature: Kernel Fusion

    {
      "kernel_fusion": {
        "enable": "bool",
        "memory_efficient_fusion": "bool",
        "custom_cuda_kernels": "list"
      }
    }
    

    For more information, please check the kernel fusion tutorial

    Source code(tar.gz)
    Source code(zip)
  • v2.0.0a2(Feb 2, 2022)

  • v2.0.0a1(Feb 2, 2022)

    Add activation checkpointing

    You can use efficient activation checkpointing using OSLO with the following configuration.

    model = oslo.initialize(
        model,
        config={
            "model_parallelism": {
                "enable": True,
                "tensor_parallel_size": YOUR_TENSOR_PARALLEL_SIZE,
            },
            "activation_checkpointing": {
                "enable": True,
                "cpu_checkpointing": True,
                "partitioned_checkpointing": True,
                "contiguous_checkpointing": True,
            },
        },
    )
    

    Tutorial: https://tunib-ai.github.io/oslo/TUTORIALS/activation_checkpointing.html

    Source code(tar.gz)
    Source code(zip)
  • v2.0.0a0(Jan 30, 2022)

    New API

    • We paid homage to DeepSpeed. Now it's easier and simpler to use.
    import oslo
    
    model = oslo.initialize(model, config="oslo-config.json")
    

    Add new models

    • Albert
    • Bert
    • Bart
    • T5
    • GPT2
    • GPTNeo
    • GPTJ
    • Electra
    • Roberta

    Add document

    • https://tunib-ai.github.io/oslo

    Remove old pipeline parallelism, kernel fusion code

    • We'll refurbish them using the latest methods
      • Kernel fusion: AOTAutograd
      • Pipeline parallelism: Sagemaker PP
    Source code(tar.gz)
    Source code(zip)
  • v.1.1.2(Jan 15, 2022)

    Updates

    [#7] Selective Kernel Fusion [#9] Fix argument bug

    New Feature: Selective Kernel Fusion

    Since version 1.1.2, you can fuse only partial kernels, not all kernels. Currently, only Attention class and MLP class are supported.

    from oslo import GPT2MLP, GPT2Attention
    
    # MLP only fusion
    model.fuse([GPT2MLP])
    
    # Attention only fusion
    model.fuse([GPT2Attention])
    
    # MLP + Attention fusion
    model.fuse([GPT2MLP, GPT2Attention])
    
    Source code(tar.gz)
    Source code(zip)
  • v1.1(Dec 29, 2021)

    [#3] Add deployment launcher of Parallelformers into OSLO.

    from oslo import GPTNeoForCausalLM
    
    model = GPTNeoForCausalLM.from_pretrained_with_parallel(
        "EleutherAI/gpt-neo-2.7B",
        tensor_parallel_size=2,
        pipeline_parallel_size=2,
        deployment=True  # <-- new feature !
    )
    

    You can easily use deployment launcher by deployment=True. Please refer to USAGE.md for more details.

    Source code(tar.gz)
    Source code(zip)
  • v1.0.1(Dec 22, 2021)

  • v1.0(Dec 21, 2021)


    O S L O

    Open Source framework for Large-scale transformer Optimization

    GitHub release Apache 2.0 Docs Issues



    What's New:

    What is OSLO about?

    OSLO is a framework that provides various GPU based optimization features for large-scale modeling. As of 2021, the Hugging Face Transformers is being considered de facto standard. However, it does not best fit the purposes of large-scale modeling yet. This is where OSLO comes in. OSLO is designed to make it easier to train large models with the Transformers. For example, you can fine-tune GPTJ on the Hugging Face Model Hub without many extra efforts using OSLO. Currently, GPT2, GPTNeo, and GPTJ are supported, but we plan to support more soon.

    Installation

    OSLO can be easily installed using the pip package manager. All the dependencies such as torch, transformers, dacite, ninja and pybind11 should be installed automatically with the following command. Be careful that the 'core' in the PyPI project name.

    pip install oslo-core
    

    Some of features rely on the C++ language. So we provide an option, CPP_AVAILABLE, to decide whether or not you install them.

    • If the C++ is available:
    CPP_AVAILABLE=1 pip install oslo-core
    
    • If the C++ is not available:
    CPP_AVAILABLE=0 pip install oslo-core
    

    Note that the default value of CPP_AVAILABLE is 0 in Windows and 1 in Linux.

    Key Features

    import deepspeed 
    from oslo import GPTJForCausalLM
    
    # 1. 3D Parallelism
    model = GPTJForCausalLM.from_pretrained_with_parallel(
        "EleutherAI/gpt-j-6B", tensor_parallel_size=2, pipeline_parallel_size=2,
    )
    
    # 2. Kernel Fusion
    model = model.fuse()
    
    # 3. DeepSpeed Support
    engines = deepspeed.initialize(
        model=model.gpu_modules(), model_parameters=model.gpu_paramters(), ...,
    )
    
    # 4. Data Processing
    from oslo import (
        DatasetPreprocessor, 
        DatasetBlender, 
        DatasetForCausalLM, 
        ...    
    )
    

    OSLO offers the following features.

    • 3D Parallelism: The state-of-the-art technique for training a large-scale model with multiple GPUs.
    • Kernel Fusion: A GPU optimization method to increase training and inference speed.
    • DeepSpeed Support: We support DeepSpeed which provides ZeRO data parallelism.
    • Data Processing: Various utilities for efficient large-scale data processing.

    See USAGE.md to learn how to use them.

    Administrative Notes

    Citing OSLO

    If you find our work useful, please consider citing:

    @misc{oslo,
      author       = {Ko, Hyunwoong and Kim, Soohwan and Park, Kyubyong},
      title        = {OSLO: Open Source framework for Large-scale transformer Optimization},
      howpublished = {\url{https://github.com/tunib-ai/oslo}},
      year         = {2021},
    }
    

    Licensing

    The Code of the OSLO project is licensed under the terms of the Apache License 2.0.

    Copyright 2021 TUNiB Inc. http://www.tunib.ai All Rights Reserved.

    Acknowledgements

    The OSLO project is built with GPU support from the AICA (Artificial Intelligence Industry Cluster Agency).

    Source code(tar.gz)
    Source code(zip)
Owner
TUNiB
TUNiB Inc.
TUNiB
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
The source code and dataset for the RecGURU paper (WSDM 2022)

RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross

Chenglin Li 17 Jan 07, 2023
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
A spatial genome aligner for analyzing multiplexed DNA-FISH imaging data.

jie jie is a spatial genome aligner. This package parses true chromatin imaging signal from noise by aligning signals to a reference DNA polymer model

Bojing Jia 9 Sep 29, 2022
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
SMCA replication There are no extra compiled components in SMCA DETR and package dependencies are minimal

Usage There are no extra compiled components in SMCA DETR and package dependencies are minimal, so the code is very simple to use. We provide instruct

22 May 06, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Geometrically Adaptive Dictionary Attack on Face Recognition This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face R

6 Nov 21, 2022
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo

TuZheng 20 Sep 07, 2022
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022