OSLO: Open Source framework for Large-scale transformer Optimization

Related tags

Deep Learningoslo
Overview


O S L O

Open Source framework for Large-scale transformer Optimization

GitHub release Apache 2.0 Docs Issues



What's New:

What is OSLO about?

OSLO is a framework that provides various GPU based optimization features for large-scale modeling. As of 2021, the Hugging Face Transformers is being considered de facto standard. However, it does not best fit the purposes of large-scale modeling yet. This is where OSLO comes in. OSLO is designed to make it easier to train large models with the Transformers. For example, you can fine-tune GPTJ on the Hugging Face Model Hub without many extra efforts using OSLO. Currently, GPT2, GPTNeo, and GPTJ are supported, but we plan to support more soon.

Installation

OSLO can be easily installed using the pip package manager. All the dependencies such as torch, transformers, dacite, ninja and pybind11 should be installed automatically with the following command. Be careful that the 'core' in the PyPI project name.

pip install oslo-core

Some of features rely on the C++ language. So we provide an option, CPP_AVAILABLE, to decide whether or not you install them.

  • If the C++ is available:
CPP_AVAILABLE=1 pip install oslo-core
  • If the C++ is not available:
CPP_AVAILABLE=0 pip install oslo-core

Note that the default value of CPP_AVAILABLE is 0 in Windows and 1 in Linux.

Key Features

import deepspeed 
from oslo import GPTJForCausalLM

# 1. 3D Parallelism
model = GPTJForCausalLM.from_pretrained_with_parallel(
    "EleutherAI/gpt-j-6B", tensor_parallel_size=2, pipeline_parallel_size=2,
)

# 2. Kernel Fusion
model = model.fuse()

# 3. DeepSpeed Support
engines = deepspeed.initialize(
    model=model.gpu_modules(), model_parameters=model.gpu_paramters(), ...,
)

# 4. Data Processing
from oslo import (
    DatasetPreprocessor, 
    DatasetBlender, 
    DatasetForCausalLM, 
    ...    
)

OSLO offers the following features.

  • 3D Parallelism: The state-of-the-art technique for training a large-scale model with multiple GPUs.
  • Kernel Fusion: A GPU optimization method to increase training and inference speed.
  • DeepSpeed Support: We support DeepSpeed which provides ZeRO data parallelism.
  • Data Processing: Various utilities for efficient large-scale data processing.

See USAGE.md to learn how to use them.

Administrative Notes

Citing OSLO

If you find our work useful, please consider citing:

@misc{oslo,
  author       = {Ko, Hyunwoong and Kim, Soohwan and Park, Kyubyong},
  title        = {OSLO: Open Source framework for Large-scale transformer Optimization},
  howpublished = {\url{https://github.com/tunib-ai/oslo}},
  year         = {2021},
}

Licensing

The Code of the OSLO project is licensed under the terms of the Apache License 2.0.

Copyright 2021 TUNiB Inc. http://www.tunib.ai All Rights Reserved.

Acknowledgements

The OSLO project is built with GPU support from the AICA (Artificial Intelligence Industry Cluster Agency).

Comments
  • [WIP] Implement ZeRO Stage 3 (FSDP)

    [WIP] Implement ZeRO Stage 3 (FSDP)

    Title

    • Implement ZeRO Stage 3 (FullyShardedDataParallel)

    Description

    • [x] Add reduce_scatter_bucketer.py
      • [x] Add test_reduce_scatter_bucketer.py
    • [x] Add flatten_params_wrapper.py
      • [x] Add test_flatten_params_wrapper.py
    • [x] Add containers.py
      • [x] Add test_containers.py
    • [x] Add parallel.py
      • [x] Add test_parallel.py
    • [x] Add fsdp_optim_utils.py
    • [x] Update fsdp.py
    • [x] Add auto_wrap.py
      • [x] Add test_wrap.py
    opened by jinok2im 9
  • FusedAdam & CPUAdam

    FusedAdam & CPUAdam

    Title

    -FusedAdam & CPUAdam

    Description

    • Implement FusedAdam & CPUAdam

    Tasks

    • [x] Implement FusedAdam
    • [x] implement CPUAdam
    • [x] Test FusedAdam
    • [x] Test CPUAdam
    • [x] Test FusedSclaeMaskSoftmax (Name changed)
    opened by cozytk 6
  • [WIP] Add data processing modules referring to the lassl

    [WIP] Add data processing modules referring to the lassl

    Title

    • add data processing modules referring to the lassl

    Description

    • brought data processing functions that fit gpt2 with reference to lassl

    Linked Issues

    • None
    opened by gimmaru 6
  • Implementation of Sequential Parallelism

    Implementation of Sequential Parallelism

    SP with DP implementation

    • Implemented SP wrapper with DP

    Description

    • SequenceDataParallel works like native torch DDP with SP
    • you can find details in the file oslo/tests/torch/nn/parallal/data_parallel/test_sp.py
    opened by ohwi 5
  • Update data collators and Add models

    Update data collators and Add models

    Title

    • Update data collators and Add models

    Description

    • Updated data collators to utilize sequence parallel in Oslo trainer
    • Add models by referring to the transformers library
    opened by gimmaru 3
  • Implement Expert Parallel and Test for Initialization and Forward Pass

    Implement Expert Parallel and Test for Initialization and Forward Pass

    Title

    • Implement Expert Parallel and Test for Initialization and Forward Pass

    Description

    • Implement Wrapper, Modules and Features for Expert Parallel
    • Implement mapping_utils._ParallelMappingForHuggingFace as super class of _TensorParallelMappingForHuggingFace and _ExpertParallelMappingForHuggingFace
    • Test initialization and forward pass for expert parallel
    opened by scsc0511 3
  • Integrate Sequence Parallelism branches

    Integrate Sequence Parallelism branches

    Title

    • Sequence parallelism (feat. @reniew, @ohwi, @l-yohai)

    Description

    • This PR is Integration of SP current version. But there is something wrong.
    • We will fix the bugs for the coming week and write test modules according to the SP design.
    • It did not include the contents of the branch that worked for the test.
    opened by l-yohai 3
  • implement tp-3d layers, wrapper, test codes and refactor all tp test codes and layers

    implement tp-3d layers, wrapper, test codes and refactor all tp test codes and layers

    • implement tp-3d wrapper
    • rank transpose problem (tensor_3d_input_rank <-> tensor_3d_output_rank) by implementing ranking transpose function.
    • revise tp-3d layers for huggingface compatibility
    • implement tp-3d test codes
    • refactor all tp test codes
    • unify format across all tensor parallel modules.
    opened by bzantium 2
  • Refactoring MultiheadAttention with todo anchors

    Refactoring MultiheadAttention with todo anchors

    Title

    • Refactoring MultiheadAttention with todo anchors

    Description

    • Refactoring oslo/torch/nn/modules/functional/multi_head_attention_forward.py.
    • Remove unnecessary or unintended code and clean up annotations.
    • Unify return format and the variable name with native torch.

    Additionally, I need to test attention_mask. However, it seems that it can proceed with this part after FusedScaleMaskSoftmax is integrated.

    cc. @hyunwoongko @ohwi

    opened by l-yohai 2
  • Add tp-1d layers testing

    Add tp-1d layers testing

    • Add testing for tp-1d layers: col_linear, row_linear, vocab_embedding_1d
    • modify number to integer variable like summa_dim, world_size cc: @hyunwoongko
    opened by bzantium 2
  • [WIP] add test code of sp training

    [WIP] add test code of sp training

    Title

    • SP Model Test Code

    Description

    Writing a test code to verify that the gradient and loss values of the model are the same when the sequence parallelism is applied.

    • WIP - merging @ohwi 's test code comparing SP of ColossalAI and simple learning model.
    opened by l-yohai 2
Releases(v2.0.2)
  • v2.0.2(Aug 25, 2022)

  • v2.0.1(Feb 20, 2022)

  • v2.0.0(Feb 14, 2022)

    Official release of OSLO 2.0.0 🎉🎉

    This version of OSLO provides the following features:

    • Tensor model parallelism
    • Efficient activation checkpointing
    • Kernel fusion

    We plan to add the pipeline model parallelism and the ZeRO optimization in the next versions.


    New feature: Kernel Fusion

    {
      "kernel_fusion": {
        "enable": "bool",
        "memory_efficient_fusion": "bool",
        "custom_cuda_kernels": "list"
      }
    }
    

    For more information, please check the kernel fusion tutorial

    Source code(tar.gz)
    Source code(zip)
  • v2.0.0a2(Feb 2, 2022)

  • v2.0.0a1(Feb 2, 2022)

    Add activation checkpointing

    You can use efficient activation checkpointing using OSLO with the following configuration.

    model = oslo.initialize(
        model,
        config={
            "model_parallelism": {
                "enable": True,
                "tensor_parallel_size": YOUR_TENSOR_PARALLEL_SIZE,
            },
            "activation_checkpointing": {
                "enable": True,
                "cpu_checkpointing": True,
                "partitioned_checkpointing": True,
                "contiguous_checkpointing": True,
            },
        },
    )
    

    Tutorial: https://tunib-ai.github.io/oslo/TUTORIALS/activation_checkpointing.html

    Source code(tar.gz)
    Source code(zip)
  • v2.0.0a0(Jan 30, 2022)

    New API

    • We paid homage to DeepSpeed. Now it's easier and simpler to use.
    import oslo
    
    model = oslo.initialize(model, config="oslo-config.json")
    

    Add new models

    • Albert
    • Bert
    • Bart
    • T5
    • GPT2
    • GPTNeo
    • GPTJ
    • Electra
    • Roberta

    Add document

    • https://tunib-ai.github.io/oslo

    Remove old pipeline parallelism, kernel fusion code

    • We'll refurbish them using the latest methods
      • Kernel fusion: AOTAutograd
      • Pipeline parallelism: Sagemaker PP
    Source code(tar.gz)
    Source code(zip)
  • v.1.1.2(Jan 15, 2022)

    Updates

    [#7] Selective Kernel Fusion [#9] Fix argument bug

    New Feature: Selective Kernel Fusion

    Since version 1.1.2, you can fuse only partial kernels, not all kernels. Currently, only Attention class and MLP class are supported.

    from oslo import GPT2MLP, GPT2Attention
    
    # MLP only fusion
    model.fuse([GPT2MLP])
    
    # Attention only fusion
    model.fuse([GPT2Attention])
    
    # MLP + Attention fusion
    model.fuse([GPT2MLP, GPT2Attention])
    
    Source code(tar.gz)
    Source code(zip)
  • v1.1(Dec 29, 2021)

    [#3] Add deployment launcher of Parallelformers into OSLO.

    from oslo import GPTNeoForCausalLM
    
    model = GPTNeoForCausalLM.from_pretrained_with_parallel(
        "EleutherAI/gpt-neo-2.7B",
        tensor_parallel_size=2,
        pipeline_parallel_size=2,
        deployment=True  # <-- new feature !
    )
    

    You can easily use deployment launcher by deployment=True. Please refer to USAGE.md for more details.

    Source code(tar.gz)
    Source code(zip)
  • v1.0.1(Dec 22, 2021)

  • v1.0(Dec 21, 2021)


    O S L O

    Open Source framework for Large-scale transformer Optimization

    GitHub release Apache 2.0 Docs Issues



    What's New:

    What is OSLO about?

    OSLO is a framework that provides various GPU based optimization features for large-scale modeling. As of 2021, the Hugging Face Transformers is being considered de facto standard. However, it does not best fit the purposes of large-scale modeling yet. This is where OSLO comes in. OSLO is designed to make it easier to train large models with the Transformers. For example, you can fine-tune GPTJ on the Hugging Face Model Hub without many extra efforts using OSLO. Currently, GPT2, GPTNeo, and GPTJ are supported, but we plan to support more soon.

    Installation

    OSLO can be easily installed using the pip package manager. All the dependencies such as torch, transformers, dacite, ninja and pybind11 should be installed automatically with the following command. Be careful that the 'core' in the PyPI project name.

    pip install oslo-core
    

    Some of features rely on the C++ language. So we provide an option, CPP_AVAILABLE, to decide whether or not you install them.

    • If the C++ is available:
    CPP_AVAILABLE=1 pip install oslo-core
    
    • If the C++ is not available:
    CPP_AVAILABLE=0 pip install oslo-core
    

    Note that the default value of CPP_AVAILABLE is 0 in Windows and 1 in Linux.

    Key Features

    import deepspeed 
    from oslo import GPTJForCausalLM
    
    # 1. 3D Parallelism
    model = GPTJForCausalLM.from_pretrained_with_parallel(
        "EleutherAI/gpt-j-6B", tensor_parallel_size=2, pipeline_parallel_size=2,
    )
    
    # 2. Kernel Fusion
    model = model.fuse()
    
    # 3. DeepSpeed Support
    engines = deepspeed.initialize(
        model=model.gpu_modules(), model_parameters=model.gpu_paramters(), ...,
    )
    
    # 4. Data Processing
    from oslo import (
        DatasetPreprocessor, 
        DatasetBlender, 
        DatasetForCausalLM, 
        ...    
    )
    

    OSLO offers the following features.

    • 3D Parallelism: The state-of-the-art technique for training a large-scale model with multiple GPUs.
    • Kernel Fusion: A GPU optimization method to increase training and inference speed.
    • DeepSpeed Support: We support DeepSpeed which provides ZeRO data parallelism.
    • Data Processing: Various utilities for efficient large-scale data processing.

    See USAGE.md to learn how to use them.

    Administrative Notes

    Citing OSLO

    If you find our work useful, please consider citing:

    @misc{oslo,
      author       = {Ko, Hyunwoong and Kim, Soohwan and Park, Kyubyong},
      title        = {OSLO: Open Source framework for Large-scale transformer Optimization},
      howpublished = {\url{https://github.com/tunib-ai/oslo}},
      year         = {2021},
    }
    

    Licensing

    The Code of the OSLO project is licensed under the terms of the Apache License 2.0.

    Copyright 2021 TUNiB Inc. http://www.tunib.ai All Rights Reserved.

    Acknowledgements

    The OSLO project is built with GPU support from the AICA (Artificial Intelligence Industry Cluster Agency).

    Source code(tar.gz)
    Source code(zip)
Owner
TUNiB
TUNiB Inc.
TUNiB
Redash reset for python

redash-reset This will use a default REDASH_SECRET_KEY key of c292a0a3aa32397cdb050e233733900f this allows you to reset the password of the user ID bu

Robert Wiggins 5 Nov 14, 2022
Two-stage CenterNet

Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network. Probabilistic two-st

Xingyi Zhou 1.1k Jan 03, 2023
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 05, 2023
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Implementation of Graph Convolutional Networks in TensorFlow

Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n

Thomas Kipf 6.6k Dec 30, 2022
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
Bridging Composite and Real: Towards End-to-end Deep Image Matting

Bridging Composite and Real: Towards End-to-end Deep Image Matting Please note that the official repository of the paper Bridging Composite and Real:

Jizhizi_Li 30 Oct 31, 2022
Only valid pull requests will be allowed. Use python only and readme changes will not be accepted.

❌ This repo is excluded from hacktoberfest This repo is for python beginners and contains lot of beginner python projects for practice. You can also s

Prajjwal Pathak 50 Dec 28, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Chris Donahue 98 Dec 14, 2022
Official code release for: EditGAN: High-Precision Semantic Image Editing

Official code release for: EditGAN: High-Precision Semantic Image Editing

565 Jan 05, 2023
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022