OSLO: Open Source framework for Large-scale transformer Optimization

Related tags

Deep Learningoslo
Overview


O S L O

Open Source framework for Large-scale transformer Optimization

GitHub release Apache 2.0 Docs Issues



What's New:

What is OSLO about?

OSLO is a framework that provides various GPU based optimization features for large-scale modeling. As of 2021, the Hugging Face Transformers is being considered de facto standard. However, it does not best fit the purposes of large-scale modeling yet. This is where OSLO comes in. OSLO is designed to make it easier to train large models with the Transformers. For example, you can fine-tune GPTJ on the Hugging Face Model Hub without many extra efforts using OSLO. Currently, GPT2, GPTNeo, and GPTJ are supported, but we plan to support more soon.

Installation

OSLO can be easily installed using the pip package manager. All the dependencies such as torch, transformers, dacite, ninja and pybind11 should be installed automatically with the following command. Be careful that the 'core' in the PyPI project name.

pip install oslo-core

Some of features rely on the C++ language. So we provide an option, CPP_AVAILABLE, to decide whether or not you install them.

  • If the C++ is available:
CPP_AVAILABLE=1 pip install oslo-core
  • If the C++ is not available:
CPP_AVAILABLE=0 pip install oslo-core

Note that the default value of CPP_AVAILABLE is 0 in Windows and 1 in Linux.

Key Features

import deepspeed 
from oslo import GPTJForCausalLM

# 1. 3D Parallelism
model = GPTJForCausalLM.from_pretrained_with_parallel(
    "EleutherAI/gpt-j-6B", tensor_parallel_size=2, pipeline_parallel_size=2,
)

# 2. Kernel Fusion
model = model.fuse()

# 3. DeepSpeed Support
engines = deepspeed.initialize(
    model=model.gpu_modules(), model_parameters=model.gpu_paramters(), ...,
)

# 4. Data Processing
from oslo import (
    DatasetPreprocessor, 
    DatasetBlender, 
    DatasetForCausalLM, 
    ...    
)

OSLO offers the following features.

  • 3D Parallelism: The state-of-the-art technique for training a large-scale model with multiple GPUs.
  • Kernel Fusion: A GPU optimization method to increase training and inference speed.
  • DeepSpeed Support: We support DeepSpeed which provides ZeRO data parallelism.
  • Data Processing: Various utilities for efficient large-scale data processing.

See USAGE.md to learn how to use them.

Administrative Notes

Citing OSLO

If you find our work useful, please consider citing:

@misc{oslo,
  author       = {Ko, Hyunwoong and Kim, Soohwan and Park, Kyubyong},
  title        = {OSLO: Open Source framework for Large-scale transformer Optimization},
  howpublished = {\url{https://github.com/tunib-ai/oslo}},
  year         = {2021},
}

Licensing

The Code of the OSLO project is licensed under the terms of the Apache License 2.0.

Copyright 2021 TUNiB Inc. http://www.tunib.ai All Rights Reserved.

Acknowledgements

The OSLO project is built with GPU support from the AICA (Artificial Intelligence Industry Cluster Agency).

Comments
  • [WIP] Implement ZeRO Stage 3 (FSDP)

    [WIP] Implement ZeRO Stage 3 (FSDP)

    Title

    • Implement ZeRO Stage 3 (FullyShardedDataParallel)

    Description

    • [x] Add reduce_scatter_bucketer.py
      • [x] Add test_reduce_scatter_bucketer.py
    • [x] Add flatten_params_wrapper.py
      • [x] Add test_flatten_params_wrapper.py
    • [x] Add containers.py
      • [x] Add test_containers.py
    • [x] Add parallel.py
      • [x] Add test_parallel.py
    • [x] Add fsdp_optim_utils.py
    • [x] Update fsdp.py
    • [x] Add auto_wrap.py
      • [x] Add test_wrap.py
    opened by jinok2im 9
  • FusedAdam & CPUAdam

    FusedAdam & CPUAdam

    Title

    -FusedAdam & CPUAdam

    Description

    • Implement FusedAdam & CPUAdam

    Tasks

    • [x] Implement FusedAdam
    • [x] implement CPUAdam
    • [x] Test FusedAdam
    • [x] Test CPUAdam
    • [x] Test FusedSclaeMaskSoftmax (Name changed)
    opened by cozytk 6
  • [WIP] Add data processing modules referring to the lassl

    [WIP] Add data processing modules referring to the lassl

    Title

    • add data processing modules referring to the lassl

    Description

    • brought data processing functions that fit gpt2 with reference to lassl

    Linked Issues

    • None
    opened by gimmaru 6
  • Implementation of Sequential Parallelism

    Implementation of Sequential Parallelism

    SP with DP implementation

    • Implemented SP wrapper with DP

    Description

    • SequenceDataParallel works like native torch DDP with SP
    • you can find details in the file oslo/tests/torch/nn/parallal/data_parallel/test_sp.py
    opened by ohwi 5
  • Update data collators and Add models

    Update data collators and Add models

    Title

    • Update data collators and Add models

    Description

    • Updated data collators to utilize sequence parallel in Oslo trainer
    • Add models by referring to the transformers library
    opened by gimmaru 3
  • Implement Expert Parallel and Test for Initialization and Forward Pass

    Implement Expert Parallel and Test for Initialization and Forward Pass

    Title

    • Implement Expert Parallel and Test for Initialization and Forward Pass

    Description

    • Implement Wrapper, Modules and Features for Expert Parallel
    • Implement mapping_utils._ParallelMappingForHuggingFace as super class of _TensorParallelMappingForHuggingFace and _ExpertParallelMappingForHuggingFace
    • Test initialization and forward pass for expert parallel
    opened by scsc0511 3
  • Integrate Sequence Parallelism branches

    Integrate Sequence Parallelism branches

    Title

    • Sequence parallelism (feat. @reniew, @ohwi, @l-yohai)

    Description

    • This PR is Integration of SP current version. But there is something wrong.
    • We will fix the bugs for the coming week and write test modules according to the SP design.
    • It did not include the contents of the branch that worked for the test.
    opened by l-yohai 3
  • implement tp-3d layers, wrapper, test codes and refactor all tp test codes and layers

    implement tp-3d layers, wrapper, test codes and refactor all tp test codes and layers

    • implement tp-3d wrapper
    • rank transpose problem (tensor_3d_input_rank <-> tensor_3d_output_rank) by implementing ranking transpose function.
    • revise tp-3d layers for huggingface compatibility
    • implement tp-3d test codes
    • refactor all tp test codes
    • unify format across all tensor parallel modules.
    opened by bzantium 2
  • Refactoring MultiheadAttention with todo anchors

    Refactoring MultiheadAttention with todo anchors

    Title

    • Refactoring MultiheadAttention with todo anchors

    Description

    • Refactoring oslo/torch/nn/modules/functional/multi_head_attention_forward.py.
    • Remove unnecessary or unintended code and clean up annotations.
    • Unify return format and the variable name with native torch.

    Additionally, I need to test attention_mask. However, it seems that it can proceed with this part after FusedScaleMaskSoftmax is integrated.

    cc. @hyunwoongko @ohwi

    opened by l-yohai 2
  • Add tp-1d layers testing

    Add tp-1d layers testing

    • Add testing for tp-1d layers: col_linear, row_linear, vocab_embedding_1d
    • modify number to integer variable like summa_dim, world_size cc: @hyunwoongko
    opened by bzantium 2
  • [WIP] add test code of sp training

    [WIP] add test code of sp training

    Title

    • SP Model Test Code

    Description

    Writing a test code to verify that the gradient and loss values of the model are the same when the sequence parallelism is applied.

    • WIP - merging @ohwi 's test code comparing SP of ColossalAI and simple learning model.
    opened by l-yohai 2
Releases(v2.0.2)
  • v2.0.2(Aug 25, 2022)

  • v2.0.1(Feb 20, 2022)

  • v2.0.0(Feb 14, 2022)

    Official release of OSLO 2.0.0 🎉🎉

    This version of OSLO provides the following features:

    • Tensor model parallelism
    • Efficient activation checkpointing
    • Kernel fusion

    We plan to add the pipeline model parallelism and the ZeRO optimization in the next versions.


    New feature: Kernel Fusion

    {
      "kernel_fusion": {
        "enable": "bool",
        "memory_efficient_fusion": "bool",
        "custom_cuda_kernels": "list"
      }
    }
    

    For more information, please check the kernel fusion tutorial

    Source code(tar.gz)
    Source code(zip)
  • v2.0.0a2(Feb 2, 2022)

  • v2.0.0a1(Feb 2, 2022)

    Add activation checkpointing

    You can use efficient activation checkpointing using OSLO with the following configuration.

    model = oslo.initialize(
        model,
        config={
            "model_parallelism": {
                "enable": True,
                "tensor_parallel_size": YOUR_TENSOR_PARALLEL_SIZE,
            },
            "activation_checkpointing": {
                "enable": True,
                "cpu_checkpointing": True,
                "partitioned_checkpointing": True,
                "contiguous_checkpointing": True,
            },
        },
    )
    

    Tutorial: https://tunib-ai.github.io/oslo/TUTORIALS/activation_checkpointing.html

    Source code(tar.gz)
    Source code(zip)
  • v2.0.0a0(Jan 30, 2022)

    New API

    • We paid homage to DeepSpeed. Now it's easier and simpler to use.
    import oslo
    
    model = oslo.initialize(model, config="oslo-config.json")
    

    Add new models

    • Albert
    • Bert
    • Bart
    • T5
    • GPT2
    • GPTNeo
    • GPTJ
    • Electra
    • Roberta

    Add document

    • https://tunib-ai.github.io/oslo

    Remove old pipeline parallelism, kernel fusion code

    • We'll refurbish them using the latest methods
      • Kernel fusion: AOTAutograd
      • Pipeline parallelism: Sagemaker PP
    Source code(tar.gz)
    Source code(zip)
  • v.1.1.2(Jan 15, 2022)

    Updates

    [#7] Selective Kernel Fusion [#9] Fix argument bug

    New Feature: Selective Kernel Fusion

    Since version 1.1.2, you can fuse only partial kernels, not all kernels. Currently, only Attention class and MLP class are supported.

    from oslo import GPT2MLP, GPT2Attention
    
    # MLP only fusion
    model.fuse([GPT2MLP])
    
    # Attention only fusion
    model.fuse([GPT2Attention])
    
    # MLP + Attention fusion
    model.fuse([GPT2MLP, GPT2Attention])
    
    Source code(tar.gz)
    Source code(zip)
  • v1.1(Dec 29, 2021)

    [#3] Add deployment launcher of Parallelformers into OSLO.

    from oslo import GPTNeoForCausalLM
    
    model = GPTNeoForCausalLM.from_pretrained_with_parallel(
        "EleutherAI/gpt-neo-2.7B",
        tensor_parallel_size=2,
        pipeline_parallel_size=2,
        deployment=True  # <-- new feature !
    )
    

    You can easily use deployment launcher by deployment=True. Please refer to USAGE.md for more details.

    Source code(tar.gz)
    Source code(zip)
  • v1.0.1(Dec 22, 2021)

  • v1.0(Dec 21, 2021)


    O S L O

    Open Source framework for Large-scale transformer Optimization

    GitHub release Apache 2.0 Docs Issues



    What's New:

    What is OSLO about?

    OSLO is a framework that provides various GPU based optimization features for large-scale modeling. As of 2021, the Hugging Face Transformers is being considered de facto standard. However, it does not best fit the purposes of large-scale modeling yet. This is where OSLO comes in. OSLO is designed to make it easier to train large models with the Transformers. For example, you can fine-tune GPTJ on the Hugging Face Model Hub without many extra efforts using OSLO. Currently, GPT2, GPTNeo, and GPTJ are supported, but we plan to support more soon.

    Installation

    OSLO can be easily installed using the pip package manager. All the dependencies such as torch, transformers, dacite, ninja and pybind11 should be installed automatically with the following command. Be careful that the 'core' in the PyPI project name.

    pip install oslo-core
    

    Some of features rely on the C++ language. So we provide an option, CPP_AVAILABLE, to decide whether or not you install them.

    • If the C++ is available:
    CPP_AVAILABLE=1 pip install oslo-core
    
    • If the C++ is not available:
    CPP_AVAILABLE=0 pip install oslo-core
    

    Note that the default value of CPP_AVAILABLE is 0 in Windows and 1 in Linux.

    Key Features

    import deepspeed 
    from oslo import GPTJForCausalLM
    
    # 1. 3D Parallelism
    model = GPTJForCausalLM.from_pretrained_with_parallel(
        "EleutherAI/gpt-j-6B", tensor_parallel_size=2, pipeline_parallel_size=2,
    )
    
    # 2. Kernel Fusion
    model = model.fuse()
    
    # 3. DeepSpeed Support
    engines = deepspeed.initialize(
        model=model.gpu_modules(), model_parameters=model.gpu_paramters(), ...,
    )
    
    # 4. Data Processing
    from oslo import (
        DatasetPreprocessor, 
        DatasetBlender, 
        DatasetForCausalLM, 
        ...    
    )
    

    OSLO offers the following features.

    • 3D Parallelism: The state-of-the-art technique for training a large-scale model with multiple GPUs.
    • Kernel Fusion: A GPU optimization method to increase training and inference speed.
    • DeepSpeed Support: We support DeepSpeed which provides ZeRO data parallelism.
    • Data Processing: Various utilities for efficient large-scale data processing.

    See USAGE.md to learn how to use them.

    Administrative Notes

    Citing OSLO

    If you find our work useful, please consider citing:

    @misc{oslo,
      author       = {Ko, Hyunwoong and Kim, Soohwan and Park, Kyubyong},
      title        = {OSLO: Open Source framework for Large-scale transformer Optimization},
      howpublished = {\url{https://github.com/tunib-ai/oslo}},
      year         = {2021},
    }
    

    Licensing

    The Code of the OSLO project is licensed under the terms of the Apache License 2.0.

    Copyright 2021 TUNiB Inc. http://www.tunib.ai All Rights Reserved.

    Acknowledgements

    The OSLO project is built with GPU support from the AICA (Artificial Intelligence Industry Cluster Agency).

    Source code(tar.gz)
    Source code(zip)
Owner
TUNiB
TUNiB Inc.
TUNiB
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022
Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons This repository contains the code to repr

Computational Neuroscience, University of Bern 3 Aug 04, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
PyTorch implementation of Self-supervised Contrastive Regularization for DG (SelfReg)

SelfReg PyTorch official implementation of Self-supervised Contrastive Regularization for Domain Generalization (SelfReg, https://arxiv.org/abs/2104.0

64 Dec 16, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022
A generator of point clouds dataset for PyPipes.

CloudPipesGenerator Documentation | Colab Notebooks | Video Tutorials | Master Degree website A generator of point clouds dataset for PyPipes. TODO Us

1 Jan 13, 2022
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports

Extreme Classification 49 Nov 06, 2022
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search"

InvariantAncestrySearch This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search

Phillip Bredahl Mogensen 0 Feb 02, 2022