TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Overview

Parameterization of Hypercomplex Multiplications (PHM)

This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication) layers and PHM-Transformers in the paper Beyond Fully-Connected Layers with Quaternions: Parameterization of Hypercomplex Multiplications with 1/n Parameters at ICLR 2021.

Installation

One may install the following libraries before running our code:

Usage

The usage of this repository follows the original tensor2tensor repository (e.g., t2t-datagen, t2t-trainer, t2t-avg-all, followed by t2t-decoder). It helps to gain familiarity on tensor2tensor before attempting to run our code. Specifically, setting --t2t_usr_dir=./Parameterization-of-Hypercomplex-Multiplications will allow tensor2tensor to register PHM-Transformers.

Training

For example, to evaluate PHM-Transformer (n=4) on the En-Vi machine translation task (t2t-datagen --problem=translate_envi_iwslt32k), one may set the following flags when training:

t2t-trainer \
--problem=translate_envi_iwslt32k \
--model=light_transformer \
--hparams_set=light_transformer_base_single_gpu \
--hparams="light_mode='random',hidden_size=512,factor=4" \
--train_steps=50000

where light_transformer with light_mode='random' is the alias of the PHM-Transformer in our implementation.

Aggretating Checkpoints

After training, the latest 8 checkpoints are averaged:

t2t-avg-all --model_dir $TRAIN_DIR --output_dir $AVG_DIR --n 8

where $TRAIN_DIR and $AVG_DIR need to be specified by users.

Testing

To decode the target sequence, one has to additionally set the decode_hparams as follows:

t2t-decoder \
--decode_hparams="beam_size=5,alpha=0.6"

Then t2t-bleu is invoked for calculating the BLEU.

PHM Implementations

PHM is implemented with operations in make_random_mul and random_ffn, which are mathematically equivalent to sum of Kronecker products.

Among works that use PHM, some have offered alternative PHM implementations:

Citation

If you find this repository helpful, please cite our paper:

@inproceedings{zhang2021beyond,
  title={Beyond Fully-Connected Layers with Quaternions: Parameterization of Hypercomplex Multiplications with $1/n$ Parameters},
  author={Zhang, Aston and Tay, Yi and Zhang, Shuai and Chan, Alvin and Luu, Anh Tuan and Hui, ‪Siu Cheung and Fu, Jie},
  booktitle={International Conference on Learning Representations},
  year={2021}
}
Owner
Aston Zhang
Dive into Deep Learning: D2L.ai 《动手学深度学习》: zh.D2L.ai
Aston Zhang
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
A list of all papers and resoureces on Semantic Segmentation

Semantic-Segmentation A list of all papers and resoureces on Semantic Segmentation. Dataset importance SemanticSegmentation_DL Some implementation of

Alan Tang 1.1k Dec 12, 2022
The CLRS Algorithmic Reasoning Benchmark

Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.

DeepMind 251 Jan 05, 2023
Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"

Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to

MIDAS, IIIT Delhi 2 Aug 29, 2022
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Rao Muhammad Umer 6 Nov 14, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
Joint learning of images and text via maximization of mutual information

mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in

Ruizhi Liao 10 Dec 22, 2022
mPose3D, a mmWave-based 3D human pose estimation model.

mPose3D, a mmWave-based 3D human pose estimation model.

KylinChen 35 Nov 08, 2022
Library for time-series-forecasting-as-a-service.

TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi

Alessandro Falcetta 8 Jan 06, 2023
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.

MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo

owl 37 Dec 24, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022