A task-agnostic vision-language architecture as a step towards General Purpose Vision

Related tags

Deep Learninggpv-1
Overview

Towards General Purpose Vision Systems

By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem

teaser

Overview

Welcome to the official code base for GPV-I - a general purpose vision-language architecture that can learn and perform any task that requires bounding boxes or text prediction. We demonstrate the effectiveness of GPV-I by jointly training it on VQA, Captioning, Localization, and Classification tasks and achieveing favorable performance in comparison to specialized single-task models.

Available on Arxiv: https://arxiv.org/abs/2104.00743

Project Page: https://prior.allenai.org/projects/gpv

Demo: https://vision-explorer.allenai.org/general_purpose_vision

BibTex:

@article{Gupta2021GPV,
  title={Towards General Purpose Vision Systems},
  author={Tanmay Gupta and A. Kamath and Aniruddha Kembhavi and Derek Hoiem},
  journal={ArXiv},
  year={2021},
  volume={abs/2104.00743}
}

Clone repository

git clone --recurse-submodules [email protected]:allenai/gpv-1.git

Install dependencies

Create conda environment

conda create -n gpv python=3.6 -y
conda activate gpv

Install libraries

bash setup_conda_env.sh

Paths

Decide the following paths:

  • <data_dir>: This is the directory where images and annotations will be saved
  • <output_dir>: This is where outputs of various experiments will be saved including model checkpoints, visualization, inference and evaluation results

<data_dir> and <output_dir> refer to these absolute paths in the instructions below.

Download data

To study generalization of concepts across skills, we created a new split of COCO annotations - COCO-SCE. To download the original and our new split, pretrained DETR checkpoints on both splits run the following:

bash setup_data.sh <data_dir>

Note - If you intend to run experiments only on COCO-SCE, you can skip downloading COCO test images and save time and disk space by setting download_coco_test_images=False in setup_data.sh

Download model

Model Split Download
GPV COCO Link
GPV COCO-SCE Link

To use any of these models, download them into <output_dir>/<exp_name>/ckpts directory as follows:

wget <link> -P <output_dir>/<exp_name>/ckpts/

<exp_name> could be any directory name of your choice such as gpv_coco or gpv_coco_sce.

Test the model interactively

We provide easy to use interactive IPython notebooks where you may provide an image and a natural language task description and visualize the models outputs, namely - bounding boxes for relevant image regions and text answer. Note that while some tasks might expect only one of the output modalities, the model always outputs both. For example, the model outputs relevant regions during captioning and text during localization. These auxiliary outputs may be unsolicited but often provide useful and diagnostic information.

We provide the following notebooks:

  • inference.ipynb: This demonstrates inference for GPV-1 using greedy inference for text decoding as used in all experiments in our paper.
  • inference_beam_search.ipynb: Post-submission, we implemented beam search! This also allows greedy inference by setting beam size to 1. This also allows sampling multiple high ranking text outputs which is especially useful for tasks with multiple plausible outputs such as captioning.

We also provide equivalent .py scripts to run inference on a single image and task description pair. To run these scripts update output_dir, ckpt, inputs.img, and inputs.query in configs/exp/gpv_inference_cmdline.yaml.

For inference with beam search run:

python -m inference_beam_search beam_size=5

For greedy decoding either set beam_size to 1 in the previous command or run the following:

python -m inference

Train model

We provide scripts for training GPV on one or more of the following tasks:

  • CocoClassification
  • CocoVqa
  • CocoDetection (refered to as the Localization task in the paper)
  • CocoCaptioning

Training GPV-1 involves 3 steps:

  • Step 1: Update the configs/exp/gpv.yaml file. Here are the key parameters to consider (the ones marked with a star will be set later in Step 3):

    • num_gpus_per_node (set to 4 if you have 24GB GPUs, 2 for 48GB, and 1 for 80GB)
    • dist_url
    • output_dir *
    • data_dir *
    • model.pretr_detr *
  • Step 2: Decide the dataset or combination of supported datasets to train the model. This is specified through one of the files in configs/learning_datasets. For instance, all.yaml trains on all 4 tasks, cap_vqa.yaml trains on CocoCaptioning & CocoVqa, and cap.yaml trains only on CocoCaptioning. If you don't see a dataset combination you may add one by modifying all.yaml. We refer to the name of the chosen yaml file without the extension by <learning_datasets>

  • Step 3: Launch training as follows:

    bash exp/gpv/scripts/train.sh <learning_datasets> <data_split> <exp_name> <output_dir> <data_dir>
    

    Note that training comprises of 2 sub-steps. First, the model is trained for training.frozen_epochs (in configs/exp/gpv.yaml) steps with DETR weights frozen. Then the model is finetuned end-to-end for a total of training.num_epochs epochs. train_gpv.sh executes both steps sequentially. model.pretr_detr is selected automatically in train.sh based on <data_split>.

  • Step 4: Visualize loss, metrics, and learning rate on tensorboard:

    tensorboard --logdir=<output_dir> --bind_all
    
  • Step 5: Predictions are visualized on a small set of train and validation set samples every few thousand iterations (training.vis_step). These are available at <output_dir>/<exp_name>/training_visualizations

Evaluation

We provide evaluation code for the following tasks:

  • CocoClassification
  • CocoVqa
  • CocoDetection (refered to as the Localization task in the paper)
  • CocoCaptioning
  • RefCocop

Run the following command to evaluate on one or a set of tasks

bash exp/gpv/scripts/eval.sh <exp_name> <task_name> <subset> <split> <output_dir> <data_dir>
  • <exp_name>: name of the experiment directory (<output_dir>/<exp_name>) where the model to be evaluated lives.
  • <task_name>: set to all to evaluate on all 5 tasks, all_but_refexp to evalute on all tasks excepts RefCocop, or the name of tasks to evaluate only on that task.
  • <subset>: set to train or val for COCO (no test since COCO test annotations are hidden) and train, val, or test for COCO-SCE.
  • <split>: set to original_split (COCO) or gpv_split (COCO-SCE). This flag is unused for RefCocop.

Predictions and metrics are saved at <output_dir>/<exp_name>/eval.

If you wish to evaluate captioning or vqa performnce on the COCO test images, we provide scripts to generate predictions in the format expected by their respective official evaluation servers (Captioning eval server, VQA eval server). You may run these as follows:

bash exp/gpv/scripts/eval_<cap/vqa>_test.sh <exp_name> <subset> <output_dir> <data_dir>

<subset> may be test or testdev for VQA and val or test for Captioning.

Finetune GPV-1

GPV-1 can be finetuned on your data. To evaluate GPV-1's learning efficiency and extent of catastrophic forgetting, we provide scripts to finetune GPV on RefCocop. These scripts may also be used as an example of finetuning GPV on your own data.

To finetune pretrained GPV-1 on RefCocop, run the following

bash exp/gpv/scripts/ft_gpv.sh <ckpt> <train_perc> <output_dir> <data_dir>
  • <ckpt>: absolute path of the GPV-1 checkpoint that you want to initialize the training with
  • <train_perc>: percentage of the full Refcocop training set to use for learning. Supported values include 1, 2, 5, 10, 25, 50, 75, 100. These subsampled subsets can be found in <data_dir>/learning_phase_data/refcocop/

The evaluation script described in the previous section works for Refcocop evaluation as well.

A note on GPU memory requirements

  • The current hyperparameters are chosen for training GPV-1 with a batch size of 120 samples. This leads to significant GPU memory requirements during training (e.g. 5-7 days of training on four 24GB GPUs).
  • While training is memory intensive, evaluation is easily run on a single GPU (you may further reduce batch size for evaluation using eval.batch_size flag in gpv.yaml file if working with low memory GPUs).
  • It may be possible to trade-off GPU memory with training time by reducing training batch size using the training.batch_size flag. However, this might require tuning the hyperparameters to achieve competitive performance.
  • Finally, if working with COCO-like data or when finetuning from a pretrained GPV-1 checkpoint, you might be able to get good performance with low GPU memory requirements by freezing the DETR backbone (training.freeze=True) and only training the remaining modules.
Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...

Grow Function: A 3D Stacked Bifurcating Double Deep Cellular Automata which differentiates using a Genetic Algorithm... TLDR;High Def Trees that you can mint as NFTs on Solana

Nathaniel Gibson 4 Oct 08, 2022
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022
Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Dominik Klein 189 Dec 21, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX

ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone

Ibai Gorordo 23 Nov 29, 2022
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023
🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model A

Florian Wilhelm 39 Dec 03, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
This repo generates the training data and the model for Morpheus-Deblend

Morpheus-Deblend This repo generates the training data and the model for Morpheus-Deblend. This is the active development repo for the project and as

Ryan Hausen 2 Apr 18, 2022
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
One Million Scenes for Autonomous Driving

ONCE Benchmark This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset. The code is mainly based on OpenPCDet.

148 Dec 28, 2022
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021