A Python library for working with arbitrary-dimension hypercomplex numbers following the Cayley-Dickson construction of algebras.

Overview

Hypercomplex

A Python library for working with quaternions, octonions, sedenions, and beyond following the Cayley-Dickson construction of hypercomplex numbers.

The complex numbers may be viewed as an extension of the everyday real numbers. A complex number has two real-number coefficients, one multiplied by 1, the other multiplied by i.

In a similar way, a quaternion, which has 4 components, can be constructed by combining two complex numbers. Likewise, two quaternions can construct an octonion (8 components), and two octonions can construct a sedenion (16 components).

The method for this construction is known as the Cayley-Dickson construction and the resulting classes of numbers are types of hypercomplex numbers. There is no limit to the number of times you can repeat the Cayley-Dickson construction to create new types of hypercomplex numbers, doubling the number of components each time.

This Python 3 package allows the creation of number classes at any repetition level of Cayley-Dickson constructions, and has built-ins for the lower, named levels such as quaternion, octonion, and sedenion.

Hypercomplex numbers containment diagram

Installation

pip install hypercomplex

View on PyPI - View on GitHub

This package was built in Python 3.9.6 and has been tested to be compatible with python 3.6 through 3.10.

Basic Usage

from hypercomplex import Complex, Quaternion, Octonion, Voudon, cayley_dickson_construction

c = Complex(0, 7)
print(c)        # -> (0 7)
print(c == 7j)  # -> True

q = Quaternion(1.1, 2.2, 3.3, 4.4)
print(2 * q)  # -> (2.2 4.4 6.6 8.8)

print(Quaternion.e_matrix())  # -> e0  e1  e2  e3
                              #    e1 -e0  e3 -e2
                              #    e2 -e3 -e0  e1
                              #    e3  e2 -e1 -e0

o = Octonion(0, 0, 0, 0, 8, 8, 9, 9)
print(o + q)  # -> (1.1 2.2 3.3 4.4 8 8 9 9)

v = Voudon()
print(v == 0)  # -> True
print(len(v))  # -> 256

BeyondVoudon = cayley_dickson_construction(Voudon)
print(len(BeyondVoudon()))  # -> 512

For more snippets see the Thorough Usage Examples section below.

Package Contents

Three functions form the core of the package:

  • reals(base) - Given a base type (float by default), generates a class that represents numbers with 1 hypercomplex dimension, i.e. real numbers. This class can then be extended into complex numbers and beyond with cayley_dickson_construction.

    Any usual math operations on instances of the class returned by reals behave as instances of base would but their type remains the reals class. By default they are printed with the g format-spec and surrounded by parentheses, e.g. (1), to remain consistent with the format of higher dimension hypercomplex numbers.

    Python's decimal.Decimal might be another likely choice for base.

    # reals example:
    from hypercomplex import reals
    from decimal import Decimal
    
    D = reals(Decimal)
    print(D(10) / 4)   # -> (2.5)
    print(D(3) * D(9)) # -> (27)
  • cayley_dickson_construction(basis) (alias cd_construction) generates a new class of hypercomplex numbers with twice the dimension of the given basis, which must be another hypercomplex number class or class returned from reals. The new class of numbers is defined recursively on the basis according the Cayley-Dickson construction. Normal math operations may be done upon its instances and with instances of other numeric types.

    # cayley_dickson_construction example:
    from hypercomplex import *
    RealNum = reals()
    ComplexNum = cayley_dickson_construction(RealNum)
    QuaternionNum = cayley_dickson_construction(ComplexNum)
    
    q = QuaternionNum(1, 2, 3, 4)
    print(q)         # -> (1 2 3 4)
    print(1 / q)     # -> (0.0333333 -0.0666667 -0.1 -0.133333)
    print(q + 1+2j)  # -> (2 4 3 4)
  • cayley_dickson_algebra(level, base) (alias cd_algebra) is a helper function that repeatedly applies cayley_dickson_construction to the given base type (float by default) level number of times. That is, cayley_dickson_algebra returns the class for the Cayley-Dickson algebra of hypercomplex numbers with 2**level dimensions.

    # cayley_dickson_algebra example:
    from hypercomplex import *
    OctonionNum = cayley_dickson_algebra(3)
    
    o = OctonionNum(8, 7, 6, 5, 4, 3, 2, 1)
    print(o)              # -> (8 7 6 5 4 3 2 1)
    print(2 * o)          # -> (16 14 12 10 8 6 4 2)
    print(o.conjugate())  # -> (8 -7 -6 -5 -4 -3 -2 -1)

For convenience, nine internal number types are already defined, built off of each other:

Name Aliases Description
Real R, CD1, CD[0] Real numbers with 1 hypercomplex dimension based on float.
Complex C, CD2, CD[1] Complex numbers with 2 hypercomplex dimensions based on Real.
Quaternion Q, CD4, CD[2] Quaternion numbers with 4 hypercomplex dimensions based on Complex.
Octonion O, CD8, CD[3] Octonion numbers with 8 hypercomplex dimensions based on Quaternion.
Sedenion S, CD16, CD[4] Sedenion numbers with 16 hypercomplex dimensions based on Octonion.
Pathion P, CD32, CD[5] Pathion numbers with 32 hypercomplex dimensions based on Sedenion.
Chingon X, CD64, CD[6] Chingon numbers with 64 hypercomplex dimensions based on Pathion.
Routon U, CD128, CD[7] Routon numbers with 128 hypercomplex dimensions based on Chingon.
Voudon V, CD256, CD[8] Voudon numbers with 256 hypercomplex dimensions based on Routon.
# built-in types example:
from hypercomplex import *
print(Real(4))               # -> (4)
print(C(3-7j))               # -> (3 -7)
print(CD4(.1, -2.2, 3.3e3))  # -> (0.1 -2.2 3300 0)
print(CD[3](1, 0, 2, 0, 3))  # -> (1 0 2 0 3 0 0 0)

The names and letter-abbreviations were taken from this image (mirror) found in Micheal Carter's paper Visualization of the Cayley-Dickson Hypercomplex Numbers Up to the Chingons (64D), but they also may be known according to their Latin naming conventions.

Thorough Usage Examples

This list follows examples.py exactly and documents nearly all the things you can do with the hypercomplex numbers created by this package.

Every example assumes the appropriate imports are already done, e.g. from hypercomplex import *.

  1. Initialization can be done in various ways, including using Python's built in complex numbers. Unspecified coefficients become 0.

    print(R(-1.5))                        # -> (-1.5)
    print(C(2, 3))                        # -> (2 3)
    print(C(2 + 3j))                      # -> (2 3)
    print(Q(4, 5, 6, 7))                  # -> (4 5 6 7)
    print(Q(4 + 5j, C(6, 7), pair=True))  # -> (4 5 6 7)
    print(P())                            # -> (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
  2. Numbers can be added and subtracted. The result will be the type with more dimensions.

    print(Q(0, 1, 2, 2) + C(9, -1))                   # -> (9 0 2 2)
    print(100.1 - O(0, 0, 0, 0, 1.1, 2.2, 3.3, 4.4))  # -> (100.1 0 0 0 -1.1 -2.2 -3.3 -4.4)
  3. Numbers can be multiplied. The result will be the type with more dimensions.

    print(10 * S(1, 2, 3))                    # -> (10 20 30 0 0 0 0 0 0 0 0 0 0 0 0 0)
    print(Q(1.5, 2.0) * O(0, -1))             # -> (2 -1.5 0 0 0 0 0 0)
    
    # notice quaternions are non-commutative
    print(Q(1, 2, 3, 4) * Q(1, 0, 0, 1))      # -> (-3 5 1 5)
    print(Q(1, 0, 0, 1) * Q(1, 2, 3, 4))      # -> (-3 -1 5 5)
  4. Numbers can be divided and inverse gives the multiplicative inverse.

    print(100 / C(0, 2))                      # -> (0 -50)
    print(C(2, 2) / Q(1, 2, 3, 4))            # -> (0.2 -0.0666667 0.0666667 -0.466667)
    print(C(2, 2) * Q(1, 2, 3, 4).inverse())  # -> (0.2 -0.0666667 0.0666667 -0.466667)
    print(R(2).inverse(), 1 / R(2))           # -> (0.5) (0.5)
  5. Numbers can be raised to integer powers, a shortcut for repeated multiplication or division.

    q = Q(0, 3, 4, 0)
    print(q**5)               # -> (0 1875 2500 0)
    print(q * q * q * q * q)  # -> (0 1875 2500 0)
    print(q**-1)              # -> (0 -0.12 -0.16 0)
    print(1 / q)              # -> (0 -0.12 -0.16 0)
    print(q**0)               # -> (1 0 0 0)
  6. conjugate gives the conjugate of the number.

    print(R(9).conjugate())           # -> (9)
    print(C(9, 8).conjugate())        # -> (9 -8)
    print(Q(9, 8, 7, 6).conjugate())  # -> (9 -8 -7 -6)
  7. norm gives the absolute value as the base type (float by default). There is also norm_squared.

    print(O(3, 4).norm(), type(O(3, 4).norm()))  # -> 5.0 <class 'float'>
    print(abs(O(3, 4)))                          # -> 5.0
    print(O(3, 4).norm_squared())                # -> 25.0
  8. Numbers are considered equal if their coefficients all match. Non-existent coefficients are 0.

    print(R(999) == V(999))         # -> True
    print(C(1, 2) == Q(1, 2))       # -> True
    print(C(1, 2) == Q(1, 2, 0.1))  # -> False
  9. coefficients gives a tuple of the components of the number in their base type (float by default). The properties real and imag are shortcuts for the first two components. Indexing can also be used (but is inefficient).

    print(R(100).coefficients())   # -> (100.0,)
    q = Q(2, 3, 4, 5)
    print(q.coefficients())        # -> (2.0, 3.0, 4.0, 5.0)
    print(q.real, q.imag)          # -> 2.0 3.0
    print(q[0], q[1], q[2], q[3])  # -> 2.0 3.0 4.0 5.0
  10. e(index) of a number class gives the unit hypercomplex number where the index coefficient is 1 and all others are 0.

    print(C.e(0))  # -> (1 0)
    print(C.e(1))  # -> (0 1)
    print(O.e(3))  # -> (0 0 0 1 0 0 0 0)
  11. e_matrix of a number class gives the multiplication table of e(i)*e(j). Set string=False to get a 2D list instead of a string. Set raw=True to get the raw hypercomplex numbers.

    print(O.e_matrix())                        # -> e1  e2  e3  e4  e5  e6  e7
                                               #   -e0  e3 -e2  e5 -e4 -e7  e6
                                               #   -e3 -e0  e1  e6  e7 -e4 -e5
                                               #    e2 -e1 -e0  e7 -e6  e5 -e4
                                               #   -e5 -e6 -e7 -e0  e1  e2  e3
                                               #    e4 -e7  e6 -e1 -e0 -e3  e2
                                               #    e7  e4 -e5 -e2  e3 -e0 -e1
                                               #   -e6  e5  e4 -e3 -e2  e1 -e0
                                               #
    print(C.e_matrix(string=False, raw=True))  # -> [[(1 0), (0 1)], [(0 1), (-1 0)]]
  12. A number is considered truthy if it has has non-zero coefficients. Conversion to int, float and complex are only valid when the coefficients beyond the dimension of those types are all 0.

    print(bool(Q()))                    # -> False
    print(bool(Q(0, 0, 0.01, 0)))       # -> True
    
    print(complex(Q(5, 5)))             # -> (5+5j)
    print(int(V(9.9)))                  # -> 9
    # print(float(C(1, 2))) <- invalid
  13. Any usual format spec for the base type can be given in an f-string.

    o = O(0.001, 1, -2, 3.3333, 4e5)
    print(f"{o:.2f}")                 # -> (0.00 1.00 -2.00 3.33 400000.00 0.00 0.00 0.00)
    print(f"{R(23.9):04.0f}")         # -> (0024)
  14. The len of a number is its hypercomplex dimension, i.e. the number of components or coefficients it has.

    print(len(R()))      # -> 1
    print(len(C(7, 7)))  # -> 2
    print(len(U()))      # -> 128
  15. Using in behaves the same as if the number were a tuple of its coefficients.

    print(3 in Q(1, 2, 3, 4))  # -> True
    print(5 in Q(1, 2, 3, 4))  # -> False
  16. copy can be used to duplicate a number (but should generally never be needed as all operations create a new number).

    x = O(9, 8, 7)
    y = x.copy()
    print(x == y)   # -> True
    print(x is y)   # -> False
  17. base on a number class will return the base type the entire numbers are built upon.

    print(R.base())                      # -> <class 'float'>
    print(V.base())                      # -> <class 'float'>
    A = cayley_dickson_algebra(20, int)
    print(A.base())                      # -> <class 'int'>
  18. Hypercomplex numbers are weird, so be careful! Here two non-zero sedenions multiply to give zero because sedenions and beyond have zero devisors.

    s1 = S.e(5) + S.e(10)
    s2 = S.e(6) + S.e(9)
    print(s1)                                    # -> (0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0)
    print(s2)                                    # -> (0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0)
    print(s1 * s2)                               # -> (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
    print((1 / s1) * (1 / s2))                   # -> (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
    # print(1/(s1 * s2)) <- zero division error

About

I wrote this package for the novelty of it and as a math and programming exercise. The operations it can perform on hypercomplex numbers are not particularly efficient due to the recursive nature of the Cayley-Dickson construction.

I am not a mathematician, only a math hobbyist, and apologize if there are issues with the implementations or descriptions I have provided.

Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
Adjust Decision Boundary for Class Imbalanced Learning

Adjusting Decision Boundary for Class Imbalanced Learning This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting De

Peyton Byungju Kim 16 Jan 04, 2023
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
Image Captioning using CNN and Transformers

Image-Captioning Keras/Tensorflow Image Captioning application using CNN and Transformer as encoder/decoder. In particulary, the architecture consists

24 Dec 28, 2022
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
Official code for UnICORNN (ICML 2021)

UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime

Konstantin Rusch 21 Dec 22, 2022
Transformer in Computer Vision

Transformer-in-Vision A paper list of some recent Transformer-based CV works. If you find some ignored papers, please open issues or pull requests. **

506 Dec 26, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
Deep Reinforced Attention Regression for Partial Sketch Based Image Retrieval.

DARP-SBIR Intro This repository contains the source code implementation for ICDM submission paper Deep Reinforced Attention Regression for Partial Ske

2 Jan 09, 2022
Modular Gaussian Processes

Modular Gaussian Processes for Transfer Learning 🧩 Introduction This repository contains the implementation of our paper Modular Gaussian Processes f

Pablo Moreno-Muñoz 10 Mar 15, 2022
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

何森 50 Sep 20, 2022