A Python library for working with arbitrary-dimension hypercomplex numbers following the Cayley-Dickson construction of algebras.

Overview

Hypercomplex

A Python library for working with quaternions, octonions, sedenions, and beyond following the Cayley-Dickson construction of hypercomplex numbers.

The complex numbers may be viewed as an extension of the everyday real numbers. A complex number has two real-number coefficients, one multiplied by 1, the other multiplied by i.

In a similar way, a quaternion, which has 4 components, can be constructed by combining two complex numbers. Likewise, two quaternions can construct an octonion (8 components), and two octonions can construct a sedenion (16 components).

The method for this construction is known as the Cayley-Dickson construction and the resulting classes of numbers are types of hypercomplex numbers. There is no limit to the number of times you can repeat the Cayley-Dickson construction to create new types of hypercomplex numbers, doubling the number of components each time.

This Python 3 package allows the creation of number classes at any repetition level of Cayley-Dickson constructions, and has built-ins for the lower, named levels such as quaternion, octonion, and sedenion.

Hypercomplex numbers containment diagram

Installation

pip install hypercomplex

View on PyPI - View on GitHub

This package was built in Python 3.9.6 and has been tested to be compatible with python 3.6 through 3.10.

Basic Usage

from hypercomplex import Complex, Quaternion, Octonion, Voudon, cayley_dickson_construction

c = Complex(0, 7)
print(c)        # -> (0 7)
print(c == 7j)  # -> True

q = Quaternion(1.1, 2.2, 3.3, 4.4)
print(2 * q)  # -> (2.2 4.4 6.6 8.8)

print(Quaternion.e_matrix())  # -> e0  e1  e2  e3
                              #    e1 -e0  e3 -e2
                              #    e2 -e3 -e0  e1
                              #    e3  e2 -e1 -e0

o = Octonion(0, 0, 0, 0, 8, 8, 9, 9)
print(o + q)  # -> (1.1 2.2 3.3 4.4 8 8 9 9)

v = Voudon()
print(v == 0)  # -> True
print(len(v))  # -> 256

BeyondVoudon = cayley_dickson_construction(Voudon)
print(len(BeyondVoudon()))  # -> 512

For more snippets see the Thorough Usage Examples section below.

Package Contents

Three functions form the core of the package:

  • reals(base) - Given a base type (float by default), generates a class that represents numbers with 1 hypercomplex dimension, i.e. real numbers. This class can then be extended into complex numbers and beyond with cayley_dickson_construction.

    Any usual math operations on instances of the class returned by reals behave as instances of base would but their type remains the reals class. By default they are printed with the g format-spec and surrounded by parentheses, e.g. (1), to remain consistent with the format of higher dimension hypercomplex numbers.

    Python's decimal.Decimal might be another likely choice for base.

    # reals example:
    from hypercomplex import reals
    from decimal import Decimal
    
    D = reals(Decimal)
    print(D(10) / 4)   # -> (2.5)
    print(D(3) * D(9)) # -> (27)
  • cayley_dickson_construction(basis) (alias cd_construction) generates a new class of hypercomplex numbers with twice the dimension of the given basis, which must be another hypercomplex number class or class returned from reals. The new class of numbers is defined recursively on the basis according the Cayley-Dickson construction. Normal math operations may be done upon its instances and with instances of other numeric types.

    # cayley_dickson_construction example:
    from hypercomplex import *
    RealNum = reals()
    ComplexNum = cayley_dickson_construction(RealNum)
    QuaternionNum = cayley_dickson_construction(ComplexNum)
    
    q = QuaternionNum(1, 2, 3, 4)
    print(q)         # -> (1 2 3 4)
    print(1 / q)     # -> (0.0333333 -0.0666667 -0.1 -0.133333)
    print(q + 1+2j)  # -> (2 4 3 4)
  • cayley_dickson_algebra(level, base) (alias cd_algebra) is a helper function that repeatedly applies cayley_dickson_construction to the given base type (float by default) level number of times. That is, cayley_dickson_algebra returns the class for the Cayley-Dickson algebra of hypercomplex numbers with 2**level dimensions.

    # cayley_dickson_algebra example:
    from hypercomplex import *
    OctonionNum = cayley_dickson_algebra(3)
    
    o = OctonionNum(8, 7, 6, 5, 4, 3, 2, 1)
    print(o)              # -> (8 7 6 5 4 3 2 1)
    print(2 * o)          # -> (16 14 12 10 8 6 4 2)
    print(o.conjugate())  # -> (8 -7 -6 -5 -4 -3 -2 -1)

For convenience, nine internal number types are already defined, built off of each other:

Name Aliases Description
Real R, CD1, CD[0] Real numbers with 1 hypercomplex dimension based on float.
Complex C, CD2, CD[1] Complex numbers with 2 hypercomplex dimensions based on Real.
Quaternion Q, CD4, CD[2] Quaternion numbers with 4 hypercomplex dimensions based on Complex.
Octonion O, CD8, CD[3] Octonion numbers with 8 hypercomplex dimensions based on Quaternion.
Sedenion S, CD16, CD[4] Sedenion numbers with 16 hypercomplex dimensions based on Octonion.
Pathion P, CD32, CD[5] Pathion numbers with 32 hypercomplex dimensions based on Sedenion.
Chingon X, CD64, CD[6] Chingon numbers with 64 hypercomplex dimensions based on Pathion.
Routon U, CD128, CD[7] Routon numbers with 128 hypercomplex dimensions based on Chingon.
Voudon V, CD256, CD[8] Voudon numbers with 256 hypercomplex dimensions based on Routon.
# built-in types example:
from hypercomplex import *
print(Real(4))               # -> (4)
print(C(3-7j))               # -> (3 -7)
print(CD4(.1, -2.2, 3.3e3))  # -> (0.1 -2.2 3300 0)
print(CD[3](1, 0, 2, 0, 3))  # -> (1 0 2 0 3 0 0 0)

The names and letter-abbreviations were taken from this image (mirror) found in Micheal Carter's paper Visualization of the Cayley-Dickson Hypercomplex Numbers Up to the Chingons (64D), but they also may be known according to their Latin naming conventions.

Thorough Usage Examples

This list follows examples.py exactly and documents nearly all the things you can do with the hypercomplex numbers created by this package.

Every example assumes the appropriate imports are already done, e.g. from hypercomplex import *.

  1. Initialization can be done in various ways, including using Python's built in complex numbers. Unspecified coefficients become 0.

    print(R(-1.5))                        # -> (-1.5)
    print(C(2, 3))                        # -> (2 3)
    print(C(2 + 3j))                      # -> (2 3)
    print(Q(4, 5, 6, 7))                  # -> (4 5 6 7)
    print(Q(4 + 5j, C(6, 7), pair=True))  # -> (4 5 6 7)
    print(P())                            # -> (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
  2. Numbers can be added and subtracted. The result will be the type with more dimensions.

    print(Q(0, 1, 2, 2) + C(9, -1))                   # -> (9 0 2 2)
    print(100.1 - O(0, 0, 0, 0, 1.1, 2.2, 3.3, 4.4))  # -> (100.1 0 0 0 -1.1 -2.2 -3.3 -4.4)
  3. Numbers can be multiplied. The result will be the type with more dimensions.

    print(10 * S(1, 2, 3))                    # -> (10 20 30 0 0 0 0 0 0 0 0 0 0 0 0 0)
    print(Q(1.5, 2.0) * O(0, -1))             # -> (2 -1.5 0 0 0 0 0 0)
    
    # notice quaternions are non-commutative
    print(Q(1, 2, 3, 4) * Q(1, 0, 0, 1))      # -> (-3 5 1 5)
    print(Q(1, 0, 0, 1) * Q(1, 2, 3, 4))      # -> (-3 -1 5 5)
  4. Numbers can be divided and inverse gives the multiplicative inverse.

    print(100 / C(0, 2))                      # -> (0 -50)
    print(C(2, 2) / Q(1, 2, 3, 4))            # -> (0.2 -0.0666667 0.0666667 -0.466667)
    print(C(2, 2) * Q(1, 2, 3, 4).inverse())  # -> (0.2 -0.0666667 0.0666667 -0.466667)
    print(R(2).inverse(), 1 / R(2))           # -> (0.5) (0.5)
  5. Numbers can be raised to integer powers, a shortcut for repeated multiplication or division.

    q = Q(0, 3, 4, 0)
    print(q**5)               # -> (0 1875 2500 0)
    print(q * q * q * q * q)  # -> (0 1875 2500 0)
    print(q**-1)              # -> (0 -0.12 -0.16 0)
    print(1 / q)              # -> (0 -0.12 -0.16 0)
    print(q**0)               # -> (1 0 0 0)
  6. conjugate gives the conjugate of the number.

    print(R(9).conjugate())           # -> (9)
    print(C(9, 8).conjugate())        # -> (9 -8)
    print(Q(9, 8, 7, 6).conjugate())  # -> (9 -8 -7 -6)
  7. norm gives the absolute value as the base type (float by default). There is also norm_squared.

    print(O(3, 4).norm(), type(O(3, 4).norm()))  # -> 5.0 <class 'float'>
    print(abs(O(3, 4)))                          # -> 5.0
    print(O(3, 4).norm_squared())                # -> 25.0
  8. Numbers are considered equal if their coefficients all match. Non-existent coefficients are 0.

    print(R(999) == V(999))         # -> True
    print(C(1, 2) == Q(1, 2))       # -> True
    print(C(1, 2) == Q(1, 2, 0.1))  # -> False
  9. coefficients gives a tuple of the components of the number in their base type (float by default). The properties real and imag are shortcuts for the first two components. Indexing can also be used (but is inefficient).

    print(R(100).coefficients())   # -> (100.0,)
    q = Q(2, 3, 4, 5)
    print(q.coefficients())        # -> (2.0, 3.0, 4.0, 5.0)
    print(q.real, q.imag)          # -> 2.0 3.0
    print(q[0], q[1], q[2], q[3])  # -> 2.0 3.0 4.0 5.0
  10. e(index) of a number class gives the unit hypercomplex number where the index coefficient is 1 and all others are 0.

    print(C.e(0))  # -> (1 0)
    print(C.e(1))  # -> (0 1)
    print(O.e(3))  # -> (0 0 0 1 0 0 0 0)
  11. e_matrix of a number class gives the multiplication table of e(i)*e(j). Set string=False to get a 2D list instead of a string. Set raw=True to get the raw hypercomplex numbers.

    print(O.e_matrix())                        # -> e1  e2  e3  e4  e5  e6  e7
                                               #   -e0  e3 -e2  e5 -e4 -e7  e6
                                               #   -e3 -e0  e1  e6  e7 -e4 -e5
                                               #    e2 -e1 -e0  e7 -e6  e5 -e4
                                               #   -e5 -e6 -e7 -e0  e1  e2  e3
                                               #    e4 -e7  e6 -e1 -e0 -e3  e2
                                               #    e7  e4 -e5 -e2  e3 -e0 -e1
                                               #   -e6  e5  e4 -e3 -e2  e1 -e0
                                               #
    print(C.e_matrix(string=False, raw=True))  # -> [[(1 0), (0 1)], [(0 1), (-1 0)]]
  12. A number is considered truthy if it has has non-zero coefficients. Conversion to int, float and complex are only valid when the coefficients beyond the dimension of those types are all 0.

    print(bool(Q()))                    # -> False
    print(bool(Q(0, 0, 0.01, 0)))       # -> True
    
    print(complex(Q(5, 5)))             # -> (5+5j)
    print(int(V(9.9)))                  # -> 9
    # print(float(C(1, 2))) <- invalid
  13. Any usual format spec for the base type can be given in an f-string.

    o = O(0.001, 1, -2, 3.3333, 4e5)
    print(f"{o:.2f}")                 # -> (0.00 1.00 -2.00 3.33 400000.00 0.00 0.00 0.00)
    print(f"{R(23.9):04.0f}")         # -> (0024)
  14. The len of a number is its hypercomplex dimension, i.e. the number of components or coefficients it has.

    print(len(R()))      # -> 1
    print(len(C(7, 7)))  # -> 2
    print(len(U()))      # -> 128
  15. Using in behaves the same as if the number were a tuple of its coefficients.

    print(3 in Q(1, 2, 3, 4))  # -> True
    print(5 in Q(1, 2, 3, 4))  # -> False
  16. copy can be used to duplicate a number (but should generally never be needed as all operations create a new number).

    x = O(9, 8, 7)
    y = x.copy()
    print(x == y)   # -> True
    print(x is y)   # -> False
  17. base on a number class will return the base type the entire numbers are built upon.

    print(R.base())                      # -> <class 'float'>
    print(V.base())                      # -> <class 'float'>
    A = cayley_dickson_algebra(20, int)
    print(A.base())                      # -> <class 'int'>
  18. Hypercomplex numbers are weird, so be careful! Here two non-zero sedenions multiply to give zero because sedenions and beyond have zero devisors.

    s1 = S.e(5) + S.e(10)
    s2 = S.e(6) + S.e(9)
    print(s1)                                    # -> (0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0)
    print(s2)                                    # -> (0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0)
    print(s1 * s2)                               # -> (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
    print((1 / s1) * (1 / s2))                   # -> (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
    # print(1/(s1 * s2)) <- zero division error

About

I wrote this package for the novelty of it and as a math and programming exercise. The operations it can perform on hypercomplex numbers are not particularly efficient due to the recursive nature of the Cayley-Dickson construction.

I am not a mathematician, only a math hobbyist, and apologize if there are issues with the implementations or descriptions I have provided.

This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
OpenVisionAPI server

🚀 Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst

Open Vision API 93 Nov 24, 2022
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022
Fine-Tune EleutherAI GPT-Neo to Generate Netflix Movie Descriptions in Only 47 Lines of Code Using Hugginface And DeepSpeed

GPT-Neo-2.7B Fine-Tuning Example Using HuggingFace & DeepSpeed Installation cd venv/bin ./pip install -r ../../requirements.txt ./pip install deepspe

Nikita 180 Jan 05, 2023
2 Jul 19, 2022
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Phillip Lippe 1.1k Jan 07, 2023
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

Google 702 Jan 02, 2023
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
Convert Apple NeuralHash model for CSAM Detection to ONNX.

Apple NeuralHash is a perceptual hashing method for images based on neural networks. It can tolerate image resize and compression.

Asuhariet Ygvar 1.5k Dec 31, 2022
AI Virtual Calculator: This is a simple virtual calculator based on Artificial intelligence.

AI Virtual Calculator: This is a simple virtual calculator that works with gestures using OpenCV. We will use our hand in the air to click on the calc

Md. Rakibul Islam 1 Jan 13, 2022