ReferFormer - Official Implementation of ReferFormer

Overview

License Framework

PWC PWC

The official implementation of the paper:

Language as Queries for Referring
Video Object Segmentation

Language as Queries for Referring Video Object Segmentation

Jiannan Wu, Yi Jiang, Peize Sun, Zehuan Yuan, Ping Luo

Abstract

In this work, we propose a simple and unified framework built upon Transformer, termed ReferFormer. It views the language as queries and directly attends to the most relevant regions in the video frames. Concretely, we introduce a small set of object queries conditioned on the language as the input to the Transformer. In this manner, all the queries are obligated to find the referred objects only. They are eventually transformed into dynamic kernels which capture the crucial object-level information, and play the role of convolution filters to generate the segmentation masks from feature maps. The object tracking is achieved naturally by linking the corresponding queries across frames. This mechanism greatly simplifies the pipeline and the end-to-end framework is significantly different from the previous methods. Extensive experiments on Ref-Youtube-VOS, Ref-DAVIS17, A2D-Sentences and JHMDB-Sentences show the effectiveness of ReferFormer.

Requirements

We test the codes in the following environments, other versions may also be compatible:

  • CUDA 11.1
  • Python 3.7
  • Pytorch 1.8.1

Installation

Please refer to install.md for installation.

Data Preparation

Please refer to data.md for data preparation.

We provide the pretrained model for different visual backbones. You may download them here and put them in the directory pretrained_weights.

After the organization, we expect the directory struture to be the following:

ReferFormer/
├── data/
│   ├── ref-youtube-vos/
│   ├── ref-davis/
│   ├── a2d_sentences/
│   ├── jhmdb_sentences/
├── davis2017/
├── datasets/
├── models/
├── scipts/
├── tools/
├── util/
├── pretrained_weights/
├── eval_davis.py
├── main.py
├── engine.py
├── inference_ytvos.py
├── inference_davis.py
├── opts.py
...

Model Zoo

All the models are trained using 8 NVIDIA Tesla V100 GPU. You may change the --backbone parameter to use different backbones (see here).

Note: If you encounter the OOM error, please add the command --use_checkpoint (we add this command for Swin-L, Video-Swin-S and Video-Swin-B models).

Ref-Youtube-VOS

To evaluate the results, please upload the zip file to the competition server.

Backbone J&F CFBI J&F Pretrain Model Submission CFBI Submission
ResNet-50 55.6 59.4 weight model link link
ResNet-101 57.3 60.3 weight model link link
Swin-T 58.7 61.2 weight model link link
Swin-L 62.4 63.3 weight model link link
Video-Swin-T* 55.8 - - model link -
Video-Swin-T 59.4 - weight model link -
Video-Swin-S 60.1 - weight model link -
Video-Swin-B 62.9 - weight model link -

* indicates the model is trained from scratch.

Ref-DAVIS17

As described in the paper, we report the results using the model trained on Ref-Youtube-VOS without finetune.

Backbone J&F J F Model
ResNet-50 58.5 55.8 61.3 model
Swin-L 60.5 57.6 63.4 model
Video-Swin-B 61.1 58.1 64.1 model

A2D-Sentences

The pretrained models are the same as those provided for Ref-Youtube-VOS.

Backbone Overall IoU Mean IoU mAP Pretrain Model
Video-Swin-T 77.6 69.6 52.8 weight model | log
Video-Swin-S 77.7 69.8 53.9 weight model | log
Video-Swin-B 78.6 70.3 55.0 weight model | log

JHMDB-Sentences

As described in the paper, we report the results using the model trained on A2D-Sentences without finetune.

Backbone Overall IoU Mean IoU mAP Model
Video-Swin-T 71.9 71.0 42.2 model
Video-Swin-S 72.8 71.5 42.4 model
Video-Swin-B 73.0 71.8 43.7 model

Get Started

Please see Ref-Youtube-VOS, Ref-DAVIS17, A2D-Sentences and JHMDB-Sentences for details.

Acknowledgement

This repo is based on Deformable DETR and VisTR. We also refer to the repositories MDETR and MTTR. Thanks for their wonderful works.

Citation

@article{wu2022referformer,
      title={Language as Queries for Referring Video Object Segmentation}, 
      author={Jiannan Wu and Yi Jiang and Peize Sun and Zehuan Yuan and Ping Luo},
      journal={arXiv preprint arXiv:2201.00487},
      year={2022},
}
Owner
Jonas Wu
The University of Hong Kong. PhD Candidate. Computer Vision.
Jonas Wu
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
Project for tracking occupancy in Tel-Aviv parking lots.

Ahuzat Dibuk - Tracking occupancy in Tel-Aviv parking lots main.py This module was set-up to be executed on Google Cloud Platform. I run it every 15 m

Geva Kipper 35 Nov 22, 2022
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated p

Jiaqi Gu 9 Jul 14, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
Transformer based SAR image despeckling

Transformer based SAR image despeckling Using the code: The code is stable while using Python 3.6.13, CUDA =10.1 Clone this repository: git clone htt

27 Nov 13, 2022
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
Exploiting a Zoo of Checkpoints for Unseen Tasks

Exploiting a Zoo of Checkpoints for Unseen Tasks This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang,

Baidu Research 8 Sep 06, 2022
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi

Wei-Cheng Tseng 7 Nov 01, 2022
AnimationKit: AI Upscaling & Interpolation using Real-ESRGAN+RIFE

ALPHA 2.5: Frostbite Revival (Released 12/23/21) Changelog: [ UI ] Chained design. All steps link to one another! Use the master override toggles to s

87 Nov 16, 2022
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022