Exploiting a Zoo of Checkpoints for Unseen Tasks

Overview

Exploiting a Zoo of Checkpoints for Unseen Tasks

                               

This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang, Qiang Qiu and Kenneth Church.

Dependencies

We used python 3.8.5, but other versions close to that should also work. Install all required packages by

pip install --upgrade pip
pip install -r requirements.txt

We used cuda 10.2.89, but any version that meets pytorch's requirement should also work.

Highlight of Results

We highlight some major results, so that readers do not have to read the paper to grasp the main ideas. Concisely, the paper tries to answer the question:

"Can we use a checkpoint zoo to build something that better adapts to unseen tasks?"

To answer the question, first we need to understand the geometry of a space of tasks.

Characterize the Task Space

In the paper, we model the tasks as following a Gaussian process. Its covariance is computed by applying kernel alignment to extracted features. The features are obtained by inputting probe data into checkpoints, each trained for a task. For example, using 34 checkpoints from Huggingface models, we can estimate the 34x34 covariance (of their corresponding tasks).

To reproduce the above figure, refer to LMs/README.md.

Exploit the Task Space

We hypothesize that representative tasks are more generalizable to new tasks. This, of course, needs a rigorious mathematical proof. But empirically we find it is true, as indicated by the experiments on NLP and vision tasks.

So, how to identify reprentative tasks? They are supposed to convey the most information about the rest of the task space. We formulate the problem into a Max-Mutual-Information (MMI) objective. The solver takes the covariance as input, and greedily picks reprentative tasks.

Linguistic Tasks

Using the 34x34 covariance matrix, we can identify that the 5 most representative tasks are those corresponding to roberta-base, distilbert-base-uncased, t5-base, bert-base-cased and bart-large. Combining these checkpoints yields superior results on 8 new linguistic tasks, e.g., below is an example of chunking task.

To reproduce full results, check LMs/README.md for details.

Computer Vision Tasks

The observation holds for vision tasks too. Below is an experiment set up on cifar100. MMI shows steady gain over random selection, and outperforms another baseline.

To reproduce all results, check vision/README.md for details.

Additional Comments

Note: This project requires running many small jobs. So it will be very useful if you have a cluster powered by slurm, which can launch jobs in parallel. In the job-launching scripts, you can see multiple commands like

sbatch -p $partition --gres=gpu:1 --wrap "python run.py" -o $job_log_path

If you do not have such a cluster, just use

python run.py > $job_log_path

instead.

Owner
Baidu Research
Baidu Research
Baidu Research
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022
Learning Compatible Embeddings, ICCV 2021

LCE Learning Compatible Embeddings, ICCV 2021 by Qiang Meng, Chixiang Zhang, Xiaoqiang Xu and Feng Zhou Paper: Arxiv We cannot release source codes pu

Qiang Meng 25 Dec 17, 2022
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models arXiv | BibTeX High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz

CompVis Heidelberg 5.6k Dec 30, 2022
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

LiMingf 18 Aug 18, 2022
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
PyVideoAI: Action Recognition Framework

This reposity contains official implementation of: Capturing Temporal Information in a Single Frame: Channel Sampling Strategies for Action Recognitio

Kiyoon Kim 22 Dec 29, 2022
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
Model of an AI powered sign language interpreter.

TEXT AND SPEECH TO SIGN LANGUAGE. A web application which takes in text or live audio speech recording as input, converts and displays the relevant Si

Mark Gatere 4 Mar 30, 2022
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022