Exploiting a Zoo of Checkpoints for Unseen Tasks

Overview

Exploiting a Zoo of Checkpoints for Unseen Tasks

                               

This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang, Qiang Qiu and Kenneth Church.

Dependencies

We used python 3.8.5, but other versions close to that should also work. Install all required packages by

pip install --upgrade pip
pip install -r requirements.txt

We used cuda 10.2.89, but any version that meets pytorch's requirement should also work.

Highlight of Results

We highlight some major results, so that readers do not have to read the paper to grasp the main ideas. Concisely, the paper tries to answer the question:

"Can we use a checkpoint zoo to build something that better adapts to unseen tasks?"

To answer the question, first we need to understand the geometry of a space of tasks.

Characterize the Task Space

In the paper, we model the tasks as following a Gaussian process. Its covariance is computed by applying kernel alignment to extracted features. The features are obtained by inputting probe data into checkpoints, each trained for a task. For example, using 34 checkpoints from Huggingface models, we can estimate the 34x34 covariance (of their corresponding tasks).

To reproduce the above figure, refer to LMs/README.md.

Exploit the Task Space

We hypothesize that representative tasks are more generalizable to new tasks. This, of course, needs a rigorious mathematical proof. But empirically we find it is true, as indicated by the experiments on NLP and vision tasks.

So, how to identify reprentative tasks? They are supposed to convey the most information about the rest of the task space. We formulate the problem into a Max-Mutual-Information (MMI) objective. The solver takes the covariance as input, and greedily picks reprentative tasks.

Linguistic Tasks

Using the 34x34 covariance matrix, we can identify that the 5 most representative tasks are those corresponding to roberta-base, distilbert-base-uncased, t5-base, bert-base-cased and bart-large. Combining these checkpoints yields superior results on 8 new linguistic tasks, e.g., below is an example of chunking task.

To reproduce full results, check LMs/README.md for details.

Computer Vision Tasks

The observation holds for vision tasks too. Below is an experiment set up on cifar100. MMI shows steady gain over random selection, and outperforms another baseline.

To reproduce all results, check vision/README.md for details.

Additional Comments

Note: This project requires running many small jobs. So it will be very useful if you have a cluster powered by slurm, which can launch jobs in parallel. In the job-launching scripts, you can see multiple commands like

sbatch -p $partition --gres=gpu:1 --wrap "python run.py" -o $job_log_path

If you do not have such a cluster, just use

python run.py > $job_log_path

instead.

Owner
Baidu Research
Baidu Research
Baidu Research
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs We are trying hard to update the code, but it may take a while to complete due to our tight schedule rec

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".

Multi-Task Meta-Learning Modification with Stochastic Approximation This repository contains the code for the paper "Multi-Task Meta-Learning Modifica

Andrew 3 Jan 05, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Xintao 1.4k Dec 25, 2022
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap

Yuxin Chen 148 Dec 16, 2022
Bytedance Inc. 2.5k Jan 06, 2023