[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

Related tags

Deep Learningdarts-pt
Overview

DARTS-PT

Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS
Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, Cho-Jui Hsieh

Requirements

Python >= 3.7
PyTorch >= 1.5
tensorboard == 2.0.1
gpustat

Experiments on NAS-Bench-201

Dataset preparation

Download the NAS-Bench-201-v1_0-e61699.pth and save it under ./data folder.

Install NasBench201 via pip:

pip install nas-bench-201

Running DARTS-PT on NAS-Bench-201

Supernet training

The ckpts and logs will be saved to ./experiments/nasbench201/search-{script_name}-{seed}/. For example, the ckpt dir would be ./experiments/nasbench201/search-darts-201-1/ for the command below.

bash darts-201.sh

Architecture selection (projection)

The projection script loads ckpts from experiments/nasbench201/{resume_expid}

bash darts-proj-201.sh --resume_epoch 100 --resume_expid search-darts-201-1

Fix-alpha version (blank-pt):

bash blank-201.sh
bash blank-proj-201.sh --resume_expid search-blank-201-1

Experiments on S1-S4

Supernet training

The ckpts and logs will be saved to ./experiments/sota/{dataset}/search-{script_name}-{space_id}-{seed}/. For example, ./experiments/sota/cifar10/search-darts-sota-s3-1/ (script: darts-sota, space: s3, seed: 1).

bash darts-sota.sh --space [s1/s2/s3/s4] --dataset [cifar10/cifar100/svhn]

Architecture selection (projection)

bash darts-proj-sota.sh --space [s1/s2/s3/s4] --dataset [cifar10/cifar100/svhn] --resume_expid search-darts-sota-[s1/s2/s3/s4]-2

Fix-alpha version (blank-pt):

bash blank-sota.sh --space [s1/s2/s3/s4] --dataset [cifar10/cifar100/svhn]
bash blank-proj-201.sh --space [s1/s2/s3/s4] --dataset [cifar10/cifar100/svhn] --resume_expid search-blank-sota-[s1/s2/s3/s4]-2

Evaluation

bash eval.sh --arch [genotype_name]
bash eval-c100.sh --arch [genotype_name]
bash eval-svhn.sh --arch [genotype_name]

Expeirments on DARTS Space

Supernet training

bash darts-sota.sh

Archtiecture selection (projection)

bash darts-proj-sota.sh --resume_expid search-blank-sota-s5-2

Fix-alpha version (blank-pt)

bash blank-sota.sh
bash blank-proj-201.sh --resume_expid search-blank-sota-s5-2

Evaluation

bash eval.sh --arch [genotype_name]

Citation

@inproceedings{
  ruochenwang2021dartspt,
  title={{Rethinking Architecture Selection in Differentiable NAS},
  author={Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, Cho-Jui Hsieh},
  booktitle={International Conference on Learning Representations (ICLR)},
  year={2021}
}
Owner
Ruochen Wang
MSCS at UCLA. AutoML, GNN, Machine Learning
Ruochen Wang
UIUCTF 2021 Public Challenge Repository

UIUCTF-2021-Public UIUCTF 2021 Public Challenge Repository Notes: every challenge folder contains a challenge.yml file in the format for ctfcli, CTFd'

SIGPwny 15 Nov 03, 2022
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Metadata-Extractor - Metadata Extractor Script can be used to read in exif metadata

Metadata Extractor The exifextract script can be used to read in exif metadata f

1 Feb 16, 2022
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Yisheng (Ethan) He 201 Dec 28, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
A multi-mode modulator for multi-domain few-shot classification (ICCV)

A multi-mode modulator for multi-domain few-shot classification (ICCV)

Yanbin Liu 8 Apr 28, 2022
Implicit Model Specialization through DAG-based Decentralized Federated Learning

Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp

Operating Systems and Middleware Group 5 Oct 16, 2022
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
Codes for Causal Semantic Generative model (CSG), the model proposed in "Learning Causal Semantic Representation for Out-of-Distribution Prediction" (NeurIPS-21)

Learning Causal Semantic Representation for Out-of-Distribution Prediction This repository is the official implementation of "Learning Causal Semantic

Chang Liu 54 Dec 01, 2022
Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021) Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma. We address the pr

Kranti Kumar Parida 33 Jun 27, 2022
Jingju baseline - A baseline model of our project of Beijing opera script generation

Jingju Baseline It is a baseline of our project about Beijing opera script gener

midon 1 Jan 14, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos This repository contains the source code and dataset for the pa

54 Oct 09, 2022