[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

Related tags

Deep Learningdarts-pt
Overview

DARTS-PT

Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS
Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, Cho-Jui Hsieh

Requirements

Python >= 3.7
PyTorch >= 1.5
tensorboard == 2.0.1
gpustat

Experiments on NAS-Bench-201

Dataset preparation

Download the NAS-Bench-201-v1_0-e61699.pth and save it under ./data folder.

Install NasBench201 via pip:

pip install nas-bench-201

Running DARTS-PT on NAS-Bench-201

Supernet training

The ckpts and logs will be saved to ./experiments/nasbench201/search-{script_name}-{seed}/. For example, the ckpt dir would be ./experiments/nasbench201/search-darts-201-1/ for the command below.

bash darts-201.sh

Architecture selection (projection)

The projection script loads ckpts from experiments/nasbench201/{resume_expid}

bash darts-proj-201.sh --resume_epoch 100 --resume_expid search-darts-201-1

Fix-alpha version (blank-pt):

bash blank-201.sh
bash blank-proj-201.sh --resume_expid search-blank-201-1

Experiments on S1-S4

Supernet training

The ckpts and logs will be saved to ./experiments/sota/{dataset}/search-{script_name}-{space_id}-{seed}/. For example, ./experiments/sota/cifar10/search-darts-sota-s3-1/ (script: darts-sota, space: s3, seed: 1).

bash darts-sota.sh --space [s1/s2/s3/s4] --dataset [cifar10/cifar100/svhn]

Architecture selection (projection)

bash darts-proj-sota.sh --space [s1/s2/s3/s4] --dataset [cifar10/cifar100/svhn] --resume_expid search-darts-sota-[s1/s2/s3/s4]-2

Fix-alpha version (blank-pt):

bash blank-sota.sh --space [s1/s2/s3/s4] --dataset [cifar10/cifar100/svhn]
bash blank-proj-201.sh --space [s1/s2/s3/s4] --dataset [cifar10/cifar100/svhn] --resume_expid search-blank-sota-[s1/s2/s3/s4]-2

Evaluation

bash eval.sh --arch [genotype_name]
bash eval-c100.sh --arch [genotype_name]
bash eval-svhn.sh --arch [genotype_name]

Expeirments on DARTS Space

Supernet training

bash darts-sota.sh

Archtiecture selection (projection)

bash darts-proj-sota.sh --resume_expid search-blank-sota-s5-2

Fix-alpha version (blank-pt)

bash blank-sota.sh
bash blank-proj-201.sh --resume_expid search-blank-sota-s5-2

Evaluation

bash eval.sh --arch [genotype_name]

Citation

@inproceedings{
  ruochenwang2021dartspt,
  title={{Rethinking Architecture Selection in Differentiable NAS},
  author={Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, Cho-Jui Hsieh},
  booktitle={International Conference on Learning Representations (ICLR)},
  year={2021}
}
Owner
Ruochen Wang
MSCS at UCLA. AutoML, GNN, Machine Learning
Ruochen Wang
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022
MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research

MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research.The pipeline is based on nn-UNet an

QIMP team 30 Jan 01, 2023
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
PyTorch reimplementation of Diffusion Models

PyTorch pretrained Diffusion Models A PyTorch reimplementation of Denoising Diffusion Probabilistic Models with checkpoints converted from the author'

Patrick Esser 265 Jan 01, 2023
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
PyTorch Connectomics: segmentation toolbox for EM connectomics

Introduction The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individua

Zudi Lin 132 Dec 26, 2022
Deep Q-learning for playing chrome dino game

[PYTORCH] Deep Q-learning for playing Chrome Dino

Viet Nguyen 68 Dec 05, 2022
Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac

2 Apr 14, 2022
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

567 Dec 26, 2022
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Xueqi Hu 153 Dec 02, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021