[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

Related tags

Deep Learningdarts-pt
Overview

DARTS-PT

Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS
Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, Cho-Jui Hsieh

Requirements

Python >= 3.7
PyTorch >= 1.5
tensorboard == 2.0.1
gpustat

Experiments on NAS-Bench-201

Dataset preparation

Download the NAS-Bench-201-v1_0-e61699.pth and save it under ./data folder.

Install NasBench201 via pip:

pip install nas-bench-201

Running DARTS-PT on NAS-Bench-201

Supernet training

The ckpts and logs will be saved to ./experiments/nasbench201/search-{script_name}-{seed}/. For example, the ckpt dir would be ./experiments/nasbench201/search-darts-201-1/ for the command below.

bash darts-201.sh

Architecture selection (projection)

The projection script loads ckpts from experiments/nasbench201/{resume_expid}

bash darts-proj-201.sh --resume_epoch 100 --resume_expid search-darts-201-1

Fix-alpha version (blank-pt):

bash blank-201.sh
bash blank-proj-201.sh --resume_expid search-blank-201-1

Experiments on S1-S4

Supernet training

The ckpts and logs will be saved to ./experiments/sota/{dataset}/search-{script_name}-{space_id}-{seed}/. For example, ./experiments/sota/cifar10/search-darts-sota-s3-1/ (script: darts-sota, space: s3, seed: 1).

bash darts-sota.sh --space [s1/s2/s3/s4] --dataset [cifar10/cifar100/svhn]

Architecture selection (projection)

bash darts-proj-sota.sh --space [s1/s2/s3/s4] --dataset [cifar10/cifar100/svhn] --resume_expid search-darts-sota-[s1/s2/s3/s4]-2

Fix-alpha version (blank-pt):

bash blank-sota.sh --space [s1/s2/s3/s4] --dataset [cifar10/cifar100/svhn]
bash blank-proj-201.sh --space [s1/s2/s3/s4] --dataset [cifar10/cifar100/svhn] --resume_expid search-blank-sota-[s1/s2/s3/s4]-2

Evaluation

bash eval.sh --arch [genotype_name]
bash eval-c100.sh --arch [genotype_name]
bash eval-svhn.sh --arch [genotype_name]

Expeirments on DARTS Space

Supernet training

bash darts-sota.sh

Archtiecture selection (projection)

bash darts-proj-sota.sh --resume_expid search-blank-sota-s5-2

Fix-alpha version (blank-pt)

bash blank-sota.sh
bash blank-proj-201.sh --resume_expid search-blank-sota-s5-2

Evaluation

bash eval.sh --arch [genotype_name]

Citation

@inproceedings{
  ruochenwang2021dartspt,
  title={{Rethinking Architecture Selection in Differentiable NAS},
  author={Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, Cho-Jui Hsieh},
  booktitle={International Conference on Learning Representations (ICLR)},
  year={2021}
}
Owner
Ruochen Wang
MSCS at UCLA. AutoML, GNN, Machine Learning
Ruochen Wang
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

62 Nov 23, 2022
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 08, 2023
Py4fi2nd - Jupyter Notebooks and code for Python for Finance (2nd ed., O'Reilly) by Yves Hilpisch.

Python for Finance (2nd ed., O'Reilly) This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance -- Mastering Dat

Yves Hilpisch 1k Jan 05, 2023
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
Best Practices on Recommendation Systems

Recommenders What's New (February 4, 2021) We have a new relase Recommenders 2021.2! It comes with lots of bug fixes, optimizations and 3 new algorith

Microsoft 14.8k Jan 03, 2023
Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.

Koi-Koi AI Learning based AI for playing multi-round Koi-Koi hanafuda card games. Platform Python PyTorch PySimpleGUI (for the interface playing vs AI

Sanghai Guan 10 Nov 20, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Nicolas 304 Dec 28, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022