[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

Related tags

Deep Learningdarts-pt
Overview

DARTS-PT

Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS
Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, Cho-Jui Hsieh

Requirements

Python >= 3.7
PyTorch >= 1.5
tensorboard == 2.0.1
gpustat

Experiments on NAS-Bench-201

Dataset preparation

Download the NAS-Bench-201-v1_0-e61699.pth and save it under ./data folder.

Install NasBench201 via pip:

pip install nas-bench-201

Running DARTS-PT on NAS-Bench-201

Supernet training

The ckpts and logs will be saved to ./experiments/nasbench201/search-{script_name}-{seed}/. For example, the ckpt dir would be ./experiments/nasbench201/search-darts-201-1/ for the command below.

bash darts-201.sh

Architecture selection (projection)

The projection script loads ckpts from experiments/nasbench201/{resume_expid}

bash darts-proj-201.sh --resume_epoch 100 --resume_expid search-darts-201-1

Fix-alpha version (blank-pt):

bash blank-201.sh
bash blank-proj-201.sh --resume_expid search-blank-201-1

Experiments on S1-S4

Supernet training

The ckpts and logs will be saved to ./experiments/sota/{dataset}/search-{script_name}-{space_id}-{seed}/. For example, ./experiments/sota/cifar10/search-darts-sota-s3-1/ (script: darts-sota, space: s3, seed: 1).

bash darts-sota.sh --space [s1/s2/s3/s4] --dataset [cifar10/cifar100/svhn]

Architecture selection (projection)

bash darts-proj-sota.sh --space [s1/s2/s3/s4] --dataset [cifar10/cifar100/svhn] --resume_expid search-darts-sota-[s1/s2/s3/s4]-2

Fix-alpha version (blank-pt):

bash blank-sota.sh --space [s1/s2/s3/s4] --dataset [cifar10/cifar100/svhn]
bash blank-proj-201.sh --space [s1/s2/s3/s4] --dataset [cifar10/cifar100/svhn] --resume_expid search-blank-sota-[s1/s2/s3/s4]-2

Evaluation

bash eval.sh --arch [genotype_name]
bash eval-c100.sh --arch [genotype_name]
bash eval-svhn.sh --arch [genotype_name]

Expeirments on DARTS Space

Supernet training

bash darts-sota.sh

Archtiecture selection (projection)

bash darts-proj-sota.sh --resume_expid search-blank-sota-s5-2

Fix-alpha version (blank-pt)

bash blank-sota.sh
bash blank-proj-201.sh --resume_expid search-blank-sota-s5-2

Evaluation

bash eval.sh --arch [genotype_name]

Citation

@inproceedings{
  ruochenwang2021dartspt,
  title={{Rethinking Architecture Selection in Differentiable NAS},
  author={Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, Cho-Jui Hsieh},
  booktitle={International Conference on Learning Representations (ICLR)},
  year={2021}
}
Owner
Ruochen Wang
MSCS at UCLA. AutoML, GNN, Machine Learning
Ruochen Wang
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

0 May 06, 2022
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
A tool for calculating distortion parameters in coordination complexes.

OctaDist Octahedral distortion calculator: A tool for calculating distortion parameters in coordination complexes. https://octadist.github.io/ Registe

OctaDist 12 Oct 04, 2022
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
Unofficial implementation of Fast-SCNN: Fast Semantic Segmentation Network

Fast-SCNN: Fast Semantic Segmentation Network Unofficial implementation of the model architecture of Fast-SCNN. Real-time Semantic Segmentation and mo

Philip Popien 69 Aug 11, 2022
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023
September-Assistant - Open-source Windows Voice Assistant

September - Windows Assistant September is an open-source Windows personal assis

The Nithin Balaji 9 Nov 22, 2022
Public repository containing materials used for Feed Forward (FF) Neural Networks article.

Art041_NN_Feed_Forward Public repository containing materials used for Feed Forward (FF) Neural Networks article. -- Illustration of a very simple Fee

SolClover 2 Dec 29, 2021
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022