Unified tracking framework with a single appearance model

Related tags

Deep LearningUniTrack
Overview

UniTrack Logo


Paper: Do different tracking tasks require different appearance model?

[ArXiv] (comming soon) [Project Page] (comming soon)

UniTrack is a simple and Unified framework for versatile visual Tracking tasks.

As an important problem in computer vision, tracking has been fragmented into a multitude of different experimental setups. As a consequence, the literature has fragmented too, and now the novel approaches proposed by the community are usually specialized to fit only one specific setup. To understand to what extend this specialization is actually necessary, we present UniTrack, a solution to address multiple different tracking tasks within the same framework. All tasks share the same universal appearance model. UniTrack enjoys the following advantages,

Tasks & Framework

tasksframework

Tasks

We classify existing tracking tasks along four axes: (1) Single or multiple targets; (2) Users specify targets or automatic detectors specify targets; (3) Observation formats (bounding box/mask/pose); (2) Class-agnostic or class-specific (i.e. human/vehicles). We mainly expriment on 5 tasks: SOT, VOS, MOT, MOTS, and PoseTrack. Task setups are summarized in the above figure.

Appearance model

An appearance model is the only learnable component in UniTrack. It should provide universal visual representation, and is usually pre-trained on large-scale dataset in supervised or unsupervised manners. Typical examples include ImageNet pre-trained ResNets (supervised), and recent self-supervised models such as MoCo and SimCLR (unsupervised).

Propagation and Association

Two fundamental algorithm building blocks in UniTrack. Both employ features extracted by the appearance model as input. For propagation we adopt exiting methods such as cross correlation, DCF, and mask propation. For association we employ a simple algorithm and develop a novel similarity metric to make full use of the appearance model.

Results

Below we show results of UniTrack with a simple ImageNet Pre-trained ResNet-18 as the appearance model. More results (other tasks/datasets, more visualization) can be found in results.md.

Qualitative results

Single Object Tracking (SOT) on OTB-2015

Video Object Segmentation (VOS) on DAVIS-2017 val split

Multiple Object Tracking (MOT) on MOT-16 test set private detector track (Detections from FairMOT)

Multiple Object Tracking and Segmentation (MOTS) on MOTS challenge test set (Detections from COSTA_st)

Pose Tracking on PoseTrack-2018 val split (Detections from LightTrack)

Quantitative results

Single Object Tracking (SOT) on OTB-2015

Method SiamFC SiamRPN SiamRPN++ UDT* UDT+* LUDT* LUDT+* UniTrack_XCorr* UniTrack_DCF*
AUC 58.2 63.7 69.6 59.4 63.2 60.2 63.9 55.5 61.8

* indicates non-supervised methods

Video Object Segmentation (VOS) on DAVIS-2017 val split

Method SiamMask FeelVOS STM Colorization* TimeCycle* UVC* CRW* VFS* UniTrack*
J-mean 54.3 63.7 79.2 34.6 40.1 56.7 64.8 66.5 58.4

* indicates non-supervised methods

Multiple Object Tracking (MOT) on MOT-16 test set private detector track

Method POI DeepSORT-2 JDE CTrack TubeTK TraDes CSTrack FairMOT* UniTrack*
IDF-1 65.1 62.2 55.8 57.2 62.2 64.7 71.8 72.8 71.8
IDs 805 781 1544 1897 1236 1144 1071 1074 683
MOTA 66.1 61.4 64.4 67.6 66.9 70.1 70.7 74.9 74.7

* indicates methods using the same detections

Multiple Object Tracking and Segmentation (MOTS) on MOTS challenge test set

Method TrackRCNN SORTS PointTrack GMPHD COSTA_st* UniTrack*
IDF-1 42.7 57.3 42.9 65.6 70.3 67.2
IDs 567 577 868 566 421 622
sMOTA 40.6 55.0 62.3 69.0 70.2 68.9

* indicates methods using the same detections

Pose Tracking on PoseTrack-2018 val split

Method MDPN OpenSVAI Miracle KeyTrack LightTrack* UniTrack*
IDF-1 - - - - 52.2 73.2
IDs - - - - 3024 6760
sMOTA 50.6 62.4 64.0 66.6 64.8 63.5

* indicates methods using the same detections

Getting started

Demo

Update log

[2021.6.24]: Start writing docs, please stay tuned!

Acknowledgement

VideoWalk by Allan A. Jabri

SOT code by Zhipeng Zhang

Owner
ZhongdaoWang
Computer Vision, Multi-Object Tracking
ZhongdaoWang
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f

Junxiao Song 2.8k Dec 26, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
Repo for FUZE project. I will also publish some Linux kernel LPE exploits for various real world kernel vulnerabilities here. the samples are uploaded for education purposes for red and blue teams.

Linux_kernel_exploits Some Linux kernel exploits for various real world kernel vulnerabilities here. More exploits are yet to come. This repo contains

Wei Wu 472 Dec 21, 2022
Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Understanding Minimum Bayes Risk Decoding This repo provides code and documentation for the following paper: Müller and Sennrich (2021): Understanding

ZurichNLP 13 May 01, 2022
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Kai Zhang 312 Jan 07, 2023
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022