This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Overview

Manifoldron: Direct Space Partition via Manifold Discovery

This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery in which we propose a new type of machine learning models referred to as Manifoldron that directly derives decision boundaries from data and partitions the space via manifold structure discovery. Also, we systematically analyze the key characteristics of the Manifoldron including interpretability, manifold characterization capability, and its link to neural networks. The experimental results on 9 small and 11 large datasets demonstrate that the proposed Manifoldron performs competitively compared to the mainstream machine learning models.

Fig. 1 (a) Pipeline of the Manifoldron. (b) The Manifoldron key steps illustration.

Pre-requisites:

  • Windows(runned on windows 10, can also run on Ubuntu with the required packages)
  • Intell CPU(runned on 12 cores i7-8700 CPU @ 3.20GHZ)
  • Python=3.7 (Anaconda), numpy=1.18.5, pandas=0.25.3, scikit-learn=0.22.1, scipy=1.3.2, matplotlib=3.1.1.

Folders

classification: this directory contains the implementations on classfication tasks;
regression: this directory contains implementations on simple regression tasks;
fancy_manifoldron: this directory includes implementations on 3D complex manifolds.

Dataset Preparation

All datasets are publicly available from python scikit-learn package, UCI machine learning repository, Kaggle, and Github: circle, glass, ionosphere, iris, moons, parkinsons, seeds, spirals, wine, banknote, breast, chess, drug, letRecog, magic04, nursery, satimage, semeion, tic-tac-toe, usps5. Most of the datasets can also directly obtain from our shared google drive. https://drive.google.com/drive/folders/14VHR8H7ucp0Loob1PS9yrgTtE9Jm0wsK?usp=sharing.
All datasets need to put under the 'classification/data/' folder to run the Manifoldron on specific data.

Running Experiments

Classification: as a demo, below shows how different versions of the Manifoldron run on tic-tac-toe data.

>> python manifoldron_base.py       # the base manifoldron
>> python manifoldron_bagging.py    # the manifoldron with feature bagging
>> python manifoldron_parallel.py   # the manifoldron with parallel computation

If you would like to run the Manifoldron on other representative classification datasets, go to 'classification/' folder and run cooresponding .py file
Regression: go to 'regression/' folder and run cooresponding .py file to run the manifoldron as regressor.

>> python regressor_function1.py       # the manifoldron regressor.

Experiment Results

Tab. 1 classification results on the Manifoldron and its counterparts.

Fig. 2 Complex simplices.

Tab. 2 Results on complex simplices.

Owner
dayang_wang
dayang_wang
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 03, 2023
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021 Welcome to the Second Situated Interactive Multimodal Conversation

Facebook Research 81 Nov 22, 2022
Deep metric learning methods implemented in Chainer

Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P

ronekko 156 Nov 28, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

Ibai Gorordo 18 Nov 06, 2022
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Vansh Wassan 15 Jun 17, 2021
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
Minimalist Error collection Service compatible with Rollbar clients. Sentry or Rollbar alternative.

Minimalist Error collection Service Features Compatible with any Rollbar client(see https://docs.rollbar.com/docs). Just change the endpoint URL to yo

Haukur Rósinkranz 381 Nov 11, 2022
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022