A custom DeepStack model for detecting 16 human actions.

Overview

DeepStack_ActionNET

This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for detecting 16 human actions present in the ActionNET Dataset dataset. Also included in this repository is that dataset with the YOLO annotations.

>> Watch Video Demo

  • Download DeepStack Model and Dataset
  • Create API and Detect Objects
  • Discover more Custom Models
  • Train your own Model

Download DeepStack Model and Dataset

You can download the pre-trained DeepStack_ActionNET model and the annotated dataset via the links below.

Create API and Detect Actions

The Trained Model can detect the following actions in images and videos.

  • calling
  • clapping
  • cycling
  • dancing
  • drinking
  • eating
  • fighting
  • hugging
  • kissing
  • laughing
  • listening-to-music
  • running
  • sitting
  • sleeping
  • texting
  • using-laptop

To start detecting, follow the steps below

  • Install DeepStack: Install DeepStack AI Server with instructions on DeepStack's documentation via https://docs.deepstack.cc

  • Download Custom Model: Download the trained custom model actionnetv2.pt from this GitHub release. Create a folder on your machine and move the downloaded model to this folder.

    E.g A path on Windows Machine C\Users\MyUser\Documents\DeepStack-Models, which will make your model file path C\Users\MyUser\Documents\DeepStack-Models\actionnet.pt

  • Run DeepStack: To run DeepStack AI Server with the custom ActionNET model, run the command that applies to your machine as detailed on DeepStack's documentation linked here.

    E.g

    For a Windows version, you run the command below

    deepstack --MODELSTORE-DETECTION "C\Users\MyUser\Documents\DeepStack-Models" --PORT 80

    For a Linux machine

    sudo docker run -v /home/MyUser/Documents/DeepStack-Models -p 80:5000 deepquestai/deepstack

    Once DeepStack runs, you will see a log like the one below in your Terminal/Console

    That means DeepStack is running your custom actionnet.pt model and now ready to start detecting actions images via the API endpoint http://localhost:80/v1/vision/custom/actionnet or http://your_machine_ip:80/v1/vision/custom/actionnet

  • Detect actions in image: You can detect objects in an image by sending a POST request to the url mentioned above with the paramater image set to an image using any proggramming language or with a tool like POSTMAN. For the purpose of this repository, we have provided a sample Python code below.

    • A sample image can be found in images/test.jpg of this repository

    • Install Python and install the DeepStack Python SDK via the command below

      pip install deepstack_sdk
    • Run the Python file detect.py in this repository.

      python detect.py
    • After the code runs, you will find a new image in images/test_detected.jpg with the detection visualized, with the following results printed in the Terminal/Console.

      Name: dancing
      Confidence: 0.91482425
      x_min: 270
      x_max: 516
      y_min: 18
      y_max: 480
      -----------------------
      

    • You can try running action detection for other images.

Discover more Custom Models

For more custom DeepStack models that has been trained and ready to use, visit the Custom Models sample page on DeepStack's documentation https://docs.deepstack.cc/custom-models-samples/ .

Train your own Model

If you will like to train a custom model yourself, follow the instructions below.

  • Prepare and Annotate: Collect images on and annotate object(s) you plan to detect as detailed here
  • Train your Model: Train the model as detailed here
You might also like...
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Episodic Transformer (E.T.) is a novel attention-based architecture for vision-and-language navigation. E.T. is based on a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions.
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Python TFLite scripts for detecting objects of any class in an image without knowing their label.
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Beyond the Spectrum Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keu

Comments
  • How to download a Custom Model action net v2.pt in Deepstack Server Docker?

    How to download a Custom Model action net v2.pt in Deepstack Server Docker?

    Tell me how to load a custom action network model correctly v2.pt in the Deepstack server docker? Did I do the right thing?

    DeepStack: Version 2021.09.01 I created the /model store/detection folders and threw the action net file there v2.pt image

    After the reboot, I got a v1/vision/custom/action net v2 entry in the logs. Did I do the right thing? It just confuses me that there is a v1/vision/custom/action net v2 entry in the logs, and the rest are written like this.

    /v1/vision/face
    /v1/vision/face/recognize
    ....
    

    image

    Is it necessary to enter here as in the case of face and object recognition? image image

    opened by DivanX10 0
Releases(v2)
  • v2(Aug 26, 2021)

    Version 2 of the DeepStack Custom Model for object detection API to detect human actions in images and videos. It detects the following actions

    • calling
    • clapping
    • cycling
    • dancing
    • drinking
    • eating
    • fighting
    • hugging
    • kissing
    • laughing
    • listening-to-music
    • running
    • sitting
    • sleeping
    • texting
    • using-laptop

    Download the model actionnetv2.pt from the Assets section (below) in this release.

    This Model is a YOLOv5x DeepStack custom model and that was trained for 150 epochs, generating a best model with the following evaluation result.

    [email protected]: 0.995 [email protected]: 0.913

    Source code(tar.gz)
    Source code(zip)
    actionnetv2.pt(169.41 MB)
  • v1(Aug 14, 2021)

    A DeepStack Custom Model for object detection API to detect human actions in images and videos. It detects the following actions

    • calling
    • clapping
    • cycling
    • dancing
    • drinking
    • eating
    • fighting
    • hugging
    • kissing
    • laughing
    • listening-to-music
    • running
    • sitting
    • sleeping
    • texting
    • using-laptop

    Download the model actionnet.pt from the Assets section (below) in this release.

    This Model is a YOLOv5x DeepStack custom model and that was trained for 150 epochs, generating a best model with the following evaluation result.

    [email protected]: 0.9858 [email protected]: 0.8051

    Source code(tar.gz)
    Source code(zip)
    actionnet.pt(169.41 MB)
Owner
MOSES OLAFENWA
Software Engineer @Microsoft , A self-Taught computer programmer, Deep Learning, Computer Vision Researcher and Developer. Creator of ImageAI.
MOSES OLAFENWA
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO

Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo

Xingyu Lin 93 Jan 05, 2023
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis

This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis Install the package in the requirements.txt, the

108 Dec 23, 2022
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Oliver Borchert 54 Dec 06, 2022
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
Fast EMD for Python: a wrapper for Pele and Werman's C++ implementation of the Earth Mover's Distance metric

PyEMD: Fast EMD for Python PyEMD is a Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance that allows it to

William Mayner 433 Dec 31, 2022
System Design course at HSE (2021)

System Design course at HSE (2021) Wiki-страница курса Структура репозитория: slides - директория с презентациями с занятий tasks - материалы для выпо

22 Dec 25, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023