Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

Related tags

Deep Learninggraf
Overview

GRAF


This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis.

You can find detailed usage instructions for training your own models and using pre-trained models below.

If you find our code or paper useful, please consider citing

@inproceedings{Schwarz2020NEURIPS,
  title = {GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis},
  author = {Schwarz, Katja and Liao, Yiyi and Niemeyer, Michael and Geiger, Andreas},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year = {2020}
}

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called graf using

conda env create -f environment.yml
conda activate graf

Next, for nerf-pytorch install torchsearchsorted. Note that this requires torch>=1.4.0 and CUDA >= v10.1. You can install torchsearchsorted via

cd submodules/nerf_pytorch
pip install -r requirements.txt
cd torchsearchsorted
pip install .
cd ../../../

Demo

You can now test our code via:

python eval.py configs/carla.yaml --pretrained --rotation_elevation

This script should create a folder results/carla_128_from_pretrained/eval/ where you can find generated videos varying camera pose for the Cars dataset.

Datasets

If you only want to generate images using our pretrained models you do not need to download the datasets. The datasets are only needed if you want to train a model from scratch.

Cars

To download the Cars dataset from the paper simply run

cd data
./download_carla.sh
cd ..

This creates a folder data/carla/ downloads the images as a zip file and extracts them to data/carla/. While we do not use camera poses in this project we provide them for completeness. Your can download them by running

cd data
./download_carla_poses.sh
cd ..

This downloads the camera intrinsics (single file, equal for all images) and extrinsics corresponding to each image.

Faces

Download celebA. Then replace data/celebA in configs/celebA.yaml with *PATH/TO/CELEBA*/Img/img_align_celebA.

Download celebA_hq. Then replace data/celebA_hq in configs/celebAHQ.yaml with *PATH/TO/CELEBA_HQ*.

Cats

Download the CatDataset. Run

cd data
python preprocess_cats.py PATH/TO/CATS/DATASET
cd ..

to preprocess the data and save it to data/cats. If successful this script should print: Preprocessed 9407 images.

Birds

Download CUB-200-2011 and the corresponding Segmentation Masks. Run

cd data
python preprocess_cub.py PATH/TO/CUB-200-2011 PATH/TO/SEGMENTATION/MASKS
cd ..

to preprocess the data and save it to data/cub. If successful this script should print: Preprocessed 8444 images.

Usage

When you have installed all dependencies, you are ready to run our pre-trained models for 3D-aware image synthesis.

Generate images using a pretrained model

To evaluate a pretrained model, run

python eval.py CONFIG.yaml --pretrained --fid_kid --rotation_elevation --shape_appearance

where you replace CONFIG.yaml with one of the config files in ./configs.

This script should create a folder results/EXPNAME/eval with FID and KID scores in fid_kid.csv, videos for rotation and elevation in the respective folders and an interpolation for shape and appearance, shape_appearance.png.

Note that some pretrained models are available for different image sizes which you can choose by setting data:imsize in the config file to one of the following values:

configs/carla.yaml: 
    data:imsize 64 or 128 or 256 or 512
configs/celebA.yaml:
    data:imsize 64 or 128
configs/celebAHQ.yaml:
    data:imsize 256 or 512

Train a model from scratch

To train a 3D-aware generative model from scratch run

python train.py CONFIG.yaml

where you replace CONFIG.yaml with your config file. The easiest way is to use one of the existing config files in the ./configs directory which correspond to the experiments presented in the paper. Note that this will train the model from scratch and will not resume training for a pretrained model.

You can monitor on http://localhost:6006 the training process using tensorboard:

cd OUTPUT_DIR
tensorboard --logdir ./monitoring --port 6006

where you replace OUTPUT_DIR with the respective output directory.

For available training options, please take a look at configs/default.yaml.

Evaluation of a new model

For evaluation of the models run

python eval.py CONFIG.yaml --fid_kid --rotation_elevation --shape_appearance

where you replace CONFIG.yaml with your config file.

Multi-View Consistency Check

You can evaluate the multi-view consistency of the generated images by running a Multi-View-Stereo (MVS) algorithm on the generated images. This evaluation uses COLMAP and make sure that you have COLMAP installed to run

python eval.py CONFIG.yaml --reconstruction

where you replace CONFIG.yaml with your config file. You can also evaluate our pretrained models via:

python eval.py configs/carla.yaml --pretrained --reconstruction

This script should create a folder results/EXPNAME/eval/reconstruction/ where you can find generated multi-view images in images/ and the corresponding 3D reconstructions in models/.

Further Information

GAN training

This repository uses Lars Mescheder's awesome framework for GAN training.

NeRF

We base our code for the Generator on this great Pytorch reimplementation of Neural Radiance Fields.

code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
A python3 tool to take a 360 degree survey of the RF spectrum (hamlib + rotctld + RTL-SDR/HackRF)

RF Light House (rflh) A python script to use a rotor and a SDR device (RTL-SDR or HackRF One) to measure the RF level around and get a data set and be

Pavel Milanes (CO7WT) 11 Dec 13, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

Zain 1 Feb 01, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022