A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

Overview

sam4onnx

A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • Specify an arbitrary OP name and Constant type INPUT name or an arbitrary OP name and Attribute name, and pass the modified constants to rewrite the parameters of the relevant OP.
  • Two types of input are accepted: .onnx file input and onnx.ModelProto format objects.
  • To design the operation to be simple, only a single OP can be specified.
  • Attributes and constants are forcibly rewritten, so the integrity of the entire graph is not checked in detail.

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U sam4onnx

1-2. Docker

### docker pull
$ docker pull pinto0309/sam4onnx:latest

### docker build
$ docker build -t pinto0309/sam4onnx:latest .

### docker run
$ docker run --rm -it -v `pwd`:/workdir pinto0309/sam4onnx:latest
$ cd /workdir

2. CLI Usage

$ sam4onnx -h

usage:
    sam4onnx [-h]
    --input_onnx_file_path INPUT_ONNX_FILE_PATH
    --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
    [--op_name OP_NAME]
    [--attributes NAME DTYPE VALUE]
    [--input_constants NAME DTYPE VALUE]
    [--non_verbose]

optional arguments:
  -h, --help
        show this help message and exit

  --input_onnx_file_path INPUT_ONNX_FILE_PATH
        Input onnx file path.

  --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        Output onnx file path.

  --op_name OP_NAME
        OP name of the attributes to be changed.
        When --attributes is specified, --op_name must always be specified.
        e.g. --op_name aaa

  --attributes NAME DTYPE VALUE
        Parameter to change the attribute of the OP specified in --op_name.
        If the OP specified in --op_name has no attributes,
        it is ignored. attributes can be specified multiple times.
        --attributes name dtype value dtype is one of
        "float32" or "float64" or "int32" or "int64" or "str".
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

        e.g.
        --attributes alpha float32 [[1.0]]
        --attributes beta float32 [1.0]
        --attributes transA int64 0
        --attributes transB int64 0

  --input_constants NAME DTYPE VALUE
        Specifies the name of the constant to be changed.
        If you want to change only the constant,
        you do not need to specify --op_name and --attributes.
        input_constants can be specified multiple times.
        --input_constants constant_name numpy.dtype value

        e.g.
        --input_constants constant_name1 int64 0
        --input_constants constant_name2 float32 [[1.0,2.0,3.0],[4.0,5.0,6.0]]

  --non_verbose
        Do not show all information logs. Only error logs are displayed.

3. In-script Usage

$ python
>>> from sam4onnx import modify
>>> help(modify)
Help on function modify in module sam4onnx.onnx_attr_const_modify:

modify(
    input_onnx_file_path: Union[str, NoneType] = '',
    output_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    op_name: Union[str, NoneType] = '',
    attributes: Union[dict, NoneType] = None,
    input_constants: Union[dict, NoneType] = None,
    non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.

    output_onnx_file_path: Optional[str]
        Output onnx file path.
        If output_onnx_file_path is not specified, no .onnx file is output.

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    op_name: Optional[str]
        OP name of the attributes to be changed.
        When --attributes is specified, --op_name must always be specified.
        Default: ''
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

    attributes: Optional[dict]
        Specify output attributes for the OP to be generated.
        See below for the attributes that can be specified.

        {"attr_name1": numpy.ndarray, "attr_name2": numpy.ndarray, ...}

        e.g. attributes =
            {
                "alpha": np.asarray(1.0, dtype=np.float32),
                "beta": np.asarray(1.0, dtype=np.float32),
                "transA": np.asarray(0, dtype=np.int64),
                "transB": np.asarray(0, dtype=np.int64)
            }
        Default: None
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

    input_constants: Optional[dict]
        Specifies the name of the constant to be changed.
        If you want to change only the constant,
        you do not need to specify --op_name and --attributes.
        {"constant_name1": numpy.ndarray, "constant_name2": numpy.ndarray, ...}

        e.g.
        input_constants =
            {
                "constant_name1": np.asarray(0, dtype=np.int64),
                "constant_name2": np.asarray([[1.0,2.0,3.0],[4.0,5.0,6.0]], dtype=np.float32)
            }
        Default: None
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    modified_graph: onnx.ModelProto
        Mddified onnx ModelProto

4. CLI Execution

$ sam4onnx \
--op_name Transpose_17 \
--input_onnx_file_path input.onnx \
--output_onnx_file_path output.onnx \
--attributes perm int64 [0,1]

5. In-script Execution

from sam4onnx import modify

modified_graph = modify(
    onnx_graph=graph,
    input_constants={"241": np.asarray([1], dtype=np.int64)},
    non_verbose=True,
)

6. Sample

6-1. Transpose - update perm

image

$ sam4onnx \
--op_name Transpose_17 \
--input_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt.onnx \
--output_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt_mod.onnx \
--attributes perm int64 [0,1]

image

6-2. Mul - update Constant (170) - From: 2, To: 1

image

$ sam4onnx \
--input_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt.onnx \
--output_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt_mod.onnx \
--input_constants 170 float32 1

image

6-3. Reshape - update Constant (241) - From: [-1], To: [1]

image

$ sam4onnx \
--input_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt.onnx \
--output_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt_mod.onnx \
--input_constants 241 int64 [1]

image

7. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

You might also like...
Simple ONNX operation generator. Simple Operation Generator for ONNX.
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runtime Web.

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

Ranger deep learning optimizer rewrite to use newest components
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Releases(1.0.12)
  • 1.0.12(Jan 2, 2023)

    What's Changed

    • Support for models with custom domains by @PINTO0309 in https://github.com/PINTO0309/sam4onnx/pull/2

    New Contributors

    • @PINTO0309 made their first contribution in https://github.com/PINTO0309/sam4onnx/pull/2

    Full Changelog: https://github.com/PINTO0309/sam4onnx/compare/1.0.11...1.0.12

    Source code(tar.gz)
    Source code(zip)
  • 1.0.11(Sep 8, 2022)

    • Add short form parameter
      $ sam4onnx -h
      
      usage:
          sam4onnx [-h]
          -if INPUT_ONNX_FILE_PATH
          -of OUTPUT_ONNX_FILE_PATH
          [-on OP_NAME]
          [-a NAME DTYPE VALUE]
          [-da DELETE_ATTRIBUTES [DELETE_ATTRIBUTES ...]]
          [-ic NAME DTYPE VALUE]
          [-n]
      
      optional arguments:
        -h, --help
          show this help message and exit
      
        -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
          Input onnx file path.
      
        -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
          Output onnx file path.
      
        -on OP_NAME, --op_name OP_NAME
          OP name of the attributes to be changed.
          When --attributes is specified, --op_name must always be specified.
          e.g. --op_name aaa
      
        -a ATTRIBUTES ATTRIBUTES ATTRIBUTES, --attributes ATTRIBUTES ATTRIBUTES ATTRIBUTES
          Parameter to change the attribute of the OP specified in --op_name.
          If the OP specified in --op_name has no attributes,
          it is ignored. attributes can be specified multiple times.
          --attributes name dtype value dtype is one of
          "float32" or "float64" or "int32" or "int64" or "str".
          https://github.com/onnx/onnx/blob/main/docs/Operators.md
      
          e.g.
          --attributes alpha float32 [[1.0]]
          --attributes beta float32 [1.0]
          --attributes transA int64 0
          --attributes transB int64 0
      
        -da DELETE_ATTRIBUTES [DELETE_ATTRIBUTES ...], --delete_attributes DELETE_ATTRIBUTES [DELETE_ATTRIBUTES ...]
          Parameter to delete the attribute of the OP specified in --op_name.
          If the OP specified in --op_name has no attributes,
          it is ignored. delete_attributes can be specified multiple times.
          --delete_attributes name1 name2 name3
          https://github.com/onnx/onnx/blob/main/docs/Operators.md
      
          e.g. --delete_attributes alpha beta
      
        -ic INPUT_CONSTANTS INPUT_CONSTANTS INPUT_CONSTANTS, --input_constants INPUT_CONSTANTS INPUT_CONSTANTS INPUT_CONSTANTS
          Specifies the name of the constant to be changed.
          If you want to change only the constant,
          you do not need to specify --op_name and --attributes.
          input_constants can be specified multiple times.
          --input_constants constant_name numpy.dtype value
      
          e.g.
          --input_constants constant_name1 int64 0
          --input_constants constant_name2 float32 [[1.0,2.0,3.0],[4.0,5.0,6.0]]
          --input_constants constant_name3 float32 [\'-Infinity\']
      
        -n, --non_verbose
          Do not show all information logs. Only error logs are displayed.
      
    Source code(tar.gz)
    Source code(zip)
  • 1.0.10(Aug 7, 2022)

  • 1.0.9(Jul 17, 2022)

    • Support for constant rewriting when the same constant is shared. Valid only when op_name is specified. Generates a new constant that is different from the shared constant.

    • Reshape_156 onnx::Reshape_391 int64 [1, -1, 85] image

    • Reshape_174 onnx::Reshape_391 int64 [1, -1, 85] image

      sam4onnx \
      --input_onnx_file_path yolov7-tiny_test_sim.onnx \
      --output_onnx_file_path yolov7-tiny_test_sim_mod.onnx \
      --op_name Reshape_156 \
      --input_constants onnx::Reshape_391 int64 [1,14400,85]
      
    • Reshape_156 onnx::Reshape_391 int64 [1, -1, 85] -> Reshape_156 onnx::Reshape_391_mod_3 int64 [1, 14400, 85] image

    • Reshape_174 onnx::Reshape_391 int64 [1, -1, 85] image

    Source code(tar.gz)
    Source code(zip)
  • 1.0.8(Jun 7, 2022)

  • 1.0.7(May 25, 2022)

  • 1.0.6(May 15, 2022)

  • 1.0.5(May 12, 2022)

  • 1.0.4(May 5, 2022)

  • 1.0.3(May 5, 2022)

    • Support for additional attributes
      • Note that the correct attribute set according to the OP's opset is not checked, so any attribute can be added.
      • The figure below shows the addition of the attribute perm to Reshape, which does not originally exist. image
    Source code(tar.gz)
    Source code(zip)
  • 1.0.2(May 3, 2022)

  • 1.0.1(Apr 16, 2022)

  • 1.0.0(Apr 15, 2022)

Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
Code for "R-GCN: The R Could Stand for Random"

RR-GCN: Random Relational Graph Convolutional Networks PyTorch Geometric code for the paper "R-GCN: The R Could Stand for Random" RR-GCN is an extensi

PreDiCT.IDLab 31 Sep 07, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
diablo2 resurrected loot filter

Only For Chinese and Traditional Chinese The filter only for Chinese and Traditional Chinese, i didn't change it for other language.Maybe you could mo

elmagnifico 249 Dec 04, 2022
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

58 Jan 06, 2023
Continual Learning of Long Topic Sequences in Neural Information Retrieval

ContinualPassageRanking Repository for the paper "Continual Learning of Long Topic Sequences in Neural Information Retrieval". In this repository you

0 Apr 12, 2022
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T

AI Secure 14 Oct 12, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
Codes and Data Processing Files for our paper.

Code Scripts and Processing Files for EEG Sleep Staging Paper 1. Folder Tree ./src_preprocess (data preprocessing files for SHHS and Sleep EDF) sleepE

Chaoqi Yang 18 Dec 12, 2022
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022