RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

Related tags

Deep LearningRepMLP
Overview

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch)

Paper: https://arxiv.org/abs/2105.01883

Citation:

@article{ding2021repmlp,
title={RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition},
author={Ding, Xiaohan and Zhang, Xiangyu and Han, Jungong and Ding, Guiguang},
journal={arXiv preprint arXiv:2105.01883},
year={2021}
}

How to use the code

If you want to use RepMLP as a building block in your model, just check repmlp.py. It also shows an example of checking the equivalence between a training-time and an inference-time RepMLP. You can see that by

python repmlp.py

Just use it like this

from repmlp.py import *
your_model = YourModel(...)   # It has RepMLPs somewhere
train(your_model)
deploy_model = repmlp_model_convert(your_model)
test(deploy_model)

From repmlp_model_convert, you will see that the conversion is as simple as calling switch_to_deploy of every RepMLP.

The definition of the two block structures (RepMLP Bottleneck and RepMLP Light) are shown in repmlp_blocks.py. The RepMLP-ResNet is defined in repmlp_resnet.py.

Use our pre-trained models

You may download our pre-trained models from Google Drive or Baidu Cloud (the access key of Baidu is "rmlp").

python test.py [imagenet-folder] train RepMLP-Res50-light-224_train.pth -a RepMLP-Res50-light-224

Here imagenet-folder should contain the "train" and "val" folders. The default input resolution is 224x224. Here "train" indicates the training-time architecture.

You may convert them into the inference-time structure and test again to check the equivalence. For example

python convert.py RepMLP-Res50-light-224_train.pth RepMLP-Res50-light-224_deploy.pth -a RepMLP-Res50-light-224
python test.py [imagenet-folder] deploy RepMLP-Res50-light-224_deploy.pth -a RepMLP-Res50-light-224

Now "deploy" indicates the inference-time structure (without Local Perceptron).

Abstract

We propose RepMLP, a multi-layer-perceptron-style neural network building block for image recognition, which is composed of a series of fully-connected (FC) layers. Compared to convolutional layers, FC layers are more efficient, better at modeling the long-range dependencies and positional patterns, but worse at capturing the local structures, hence usually less favored for image recognition. We propose a structural re-parameterization technique that adds local prior into an FC to make it powerful for image recognition. Specifically, we construct convolutional layers inside a RepMLP during training and merge them into the FC for inference. On CIFAR, a simple pure-MLP model shows performance very close to CNN. By inserting RepMLP in traditional CNN, we improve ResNets by 1.8% accuracy on ImageNet, 2.9% for face recognition, and 2.3% mIoU on Cityscapes with lower FLOPs. Our intriguing findings highlight that combining the global representational capacity and positional perception of FC with the local prior of convolution can improve the performance of neural network with faster speed on both the tasks with translation invariance (e.g., semantic segmentation) and those with aligned images and positional patterns (e.g., face recognition).

FAQs

Q: Is the inference-time model's output the same as the training-time model?

A: Yes. You can verify that by

python repmlp.py

Q: How to use RepMLP for other tasks?

A: It is better to finetune the training-time model on your datasets. Then you should do the conversion after finetuning and before you deploy the models. For example, say you want to use RepMLP-Res50 and PSPNet for semantic segmentation, you should build a PSPNet with a training-time RepMLP-Res50 as the backbone, load pre-trained weights into the backbone, and finetune the PSPNet on your segmentation dataset. Then you should convert the backbone following the code provided in this repo and keep the other task-specific structures (the PSPNet parts, in this case). The pseudo code will be like

#   train_backbone = create_xxx(deploy=False)
#   train_backbone.load_state_dict(torch.load(...))
#   train_pspnet = build_pspnet(backbone=train_backbone)
#   segmentation_train(train_pspnet)
#   deploy_pspnet = repmlp_model_convert(train_pspnet)
#   segmentation_test(deploy_pspnet)

Finetuning with a converted model also makes sense if you insert a BN after fc3, but the performance may be slightly lower.

Q: How to quantize a model with RepMLP?

A1: Post-training quantization. After training and conversion, you may quantize the converted model with any post-training quantization method. Then you may insert a BN after fc3 and finetune to recover the accuracy just like you quantize and finetune the other models. This is the recommended solution.

A2: Quantization-aware training. During the quantization-aware training, instead of constraining the params in a single kernel (e.g., making every param in {-127, -126, .., 126, 127} for int8) for ordinary models, you should constrain the equivalent kernel (get_equivalent_fc1_fc3_params() in repmlp.py).

Q: I tried to finetune your model with multiple GPUs but got an error. Why are the names of params like "stage1.0..." in the downloaded weight file but sometimes like "module.stage1.0..." (shown by nn.Module.named_parameters()) in my model?

A: DistributedDataParallel may prefix "module." to the name of params and cause a mismatch when loading weights by name. The simplest solution is to load the weights (model.load_state_dict(...)) before DistributedDataParallel(model). Otherwise, you may insert "module." before the names like this

checkpoint = torch.load(...)    # This is just a name-value dict
ckpt = {('module.' + k) : v for k, v in checkpoint.items()}
model.load_state_dict(ckpt)

Q: So a RepMLP derives the equivalent big fc kernel before each forwarding to save computations?

A: No! More precisely, we do the conversion only once right after training. Then the training-time model can be discarded, and the resultant model has no conv branches. We only save and use the resultant model.

Contact

[email protected]

Google Scholar Profile: https://scholar.google.com/citations?user=CIjw0KoAAAAJ&hl=en

My open-sourced papers and repos:

The Structural Re-parameterization Universe:

  1. (preprint, 2021) A powerful MLP-style CNN building block
    RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition
    code.

  2. (CVPR 2021) A super simple and powerful VGG-style ConvNet architecture. Up to 83.55% ImageNet top-1 accuracy!
    RepVGG: Making VGG-style ConvNets Great Again
    code.

  3. (preprint, 2020) State-of-the-art channel pruning
    Lossless CNN Channel Pruning via Decoupling Remembering and Forgetting
    code.

  4. ACB (ICCV 2019) is a CNN component without any inference-time costs. The first work of our Structural Re-parameterization Universe.
    ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks.
    code.

  5. DBB (CVPR 2021) is a CNN component with higher performance than ACB and still no inference-time costs. Sometimes I call it ACNet v2 because "DBB" is 2 bits larger than "ACB" in ASCII (lol).
    Diverse Branch Block: Building a Convolution as an Inception-like Unit
    code.

Model compression and acceleration:

  1. (CVPR 2019) Channel pruning: Centripetal SGD for Pruning Very Deep Convolutional Networks with Complicated Structure
    code

  2. (ICML 2019) Channel pruning: Approximated Oracle Filter Pruning for Destructive CNN Width Optimization
    code

  3. (NeurIPS 2019) Unstructured pruning: Global Sparse Momentum SGD for Pruning Very Deep Neural Networks
    code

This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

40 Oct 30, 2022
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we

Koutilya PNVR 23 Oct 19, 2022
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021
Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation

Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation By: Zayd Hammoudeh and Daniel Lowd Paper: Arxiv Preprint Coming soo

Zayd Hammoudeh 2 Oct 08, 2022
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.

Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets

Wenxuan Zhou 27 Oct 28, 2022
Perfect implement. Model shared. x0.5 (Top1:60.646) and 1.0x (Top1:69.402).

Shufflenet-v2-Pytorch Introduction This is a Pytorch implementation of faceplusplus's ShuffleNet-v2. For details, please read the following papers:

423 Dec 07, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
Image-to-Image Translation in PyTorch

CycleGAN and pix2pix in PyTorch New: Please check out contrastive-unpaired-translation (CUT), our new unpaired image-to-image translation model that e

Jun-Yan Zhu 19k Jan 07, 2023
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022