RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

Related tags

Deep LearningRepMLP
Overview

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch)

Paper: https://arxiv.org/abs/2105.01883

Citation:

@article{ding2021repmlp,
title={RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition},
author={Ding, Xiaohan and Zhang, Xiangyu and Han, Jungong and Ding, Guiguang},
journal={arXiv preprint arXiv:2105.01883},
year={2021}
}

How to use the code

If you want to use RepMLP as a building block in your model, just check repmlp.py. It also shows an example of checking the equivalence between a training-time and an inference-time RepMLP. You can see that by

python repmlp.py

Just use it like this

from repmlp.py import *
your_model = YourModel(...)   # It has RepMLPs somewhere
train(your_model)
deploy_model = repmlp_model_convert(your_model)
test(deploy_model)

From repmlp_model_convert, you will see that the conversion is as simple as calling switch_to_deploy of every RepMLP.

The definition of the two block structures (RepMLP Bottleneck and RepMLP Light) are shown in repmlp_blocks.py. The RepMLP-ResNet is defined in repmlp_resnet.py.

Use our pre-trained models

You may download our pre-trained models from Google Drive or Baidu Cloud (the access key of Baidu is "rmlp").

python test.py [imagenet-folder] train RepMLP-Res50-light-224_train.pth -a RepMLP-Res50-light-224

Here imagenet-folder should contain the "train" and "val" folders. The default input resolution is 224x224. Here "train" indicates the training-time architecture.

You may convert them into the inference-time structure and test again to check the equivalence. For example

python convert.py RepMLP-Res50-light-224_train.pth RepMLP-Res50-light-224_deploy.pth -a RepMLP-Res50-light-224
python test.py [imagenet-folder] deploy RepMLP-Res50-light-224_deploy.pth -a RepMLP-Res50-light-224

Now "deploy" indicates the inference-time structure (without Local Perceptron).

Abstract

We propose RepMLP, a multi-layer-perceptron-style neural network building block for image recognition, which is composed of a series of fully-connected (FC) layers. Compared to convolutional layers, FC layers are more efficient, better at modeling the long-range dependencies and positional patterns, but worse at capturing the local structures, hence usually less favored for image recognition. We propose a structural re-parameterization technique that adds local prior into an FC to make it powerful for image recognition. Specifically, we construct convolutional layers inside a RepMLP during training and merge them into the FC for inference. On CIFAR, a simple pure-MLP model shows performance very close to CNN. By inserting RepMLP in traditional CNN, we improve ResNets by 1.8% accuracy on ImageNet, 2.9% for face recognition, and 2.3% mIoU on Cityscapes with lower FLOPs. Our intriguing findings highlight that combining the global representational capacity and positional perception of FC with the local prior of convolution can improve the performance of neural network with faster speed on both the tasks with translation invariance (e.g., semantic segmentation) and those with aligned images and positional patterns (e.g., face recognition).

FAQs

Q: Is the inference-time model's output the same as the training-time model?

A: Yes. You can verify that by

python repmlp.py

Q: How to use RepMLP for other tasks?

A: It is better to finetune the training-time model on your datasets. Then you should do the conversion after finetuning and before you deploy the models. For example, say you want to use RepMLP-Res50 and PSPNet for semantic segmentation, you should build a PSPNet with a training-time RepMLP-Res50 as the backbone, load pre-trained weights into the backbone, and finetune the PSPNet on your segmentation dataset. Then you should convert the backbone following the code provided in this repo and keep the other task-specific structures (the PSPNet parts, in this case). The pseudo code will be like

#   train_backbone = create_xxx(deploy=False)
#   train_backbone.load_state_dict(torch.load(...))
#   train_pspnet = build_pspnet(backbone=train_backbone)
#   segmentation_train(train_pspnet)
#   deploy_pspnet = repmlp_model_convert(train_pspnet)
#   segmentation_test(deploy_pspnet)

Finetuning with a converted model also makes sense if you insert a BN after fc3, but the performance may be slightly lower.

Q: How to quantize a model with RepMLP?

A1: Post-training quantization. After training and conversion, you may quantize the converted model with any post-training quantization method. Then you may insert a BN after fc3 and finetune to recover the accuracy just like you quantize and finetune the other models. This is the recommended solution.

A2: Quantization-aware training. During the quantization-aware training, instead of constraining the params in a single kernel (e.g., making every param in {-127, -126, .., 126, 127} for int8) for ordinary models, you should constrain the equivalent kernel (get_equivalent_fc1_fc3_params() in repmlp.py).

Q: I tried to finetune your model with multiple GPUs but got an error. Why are the names of params like "stage1.0..." in the downloaded weight file but sometimes like "module.stage1.0..." (shown by nn.Module.named_parameters()) in my model?

A: DistributedDataParallel may prefix "module." to the name of params and cause a mismatch when loading weights by name. The simplest solution is to load the weights (model.load_state_dict(...)) before DistributedDataParallel(model). Otherwise, you may insert "module." before the names like this

checkpoint = torch.load(...)    # This is just a name-value dict
ckpt = {('module.' + k) : v for k, v in checkpoint.items()}
model.load_state_dict(ckpt)

Q: So a RepMLP derives the equivalent big fc kernel before each forwarding to save computations?

A: No! More precisely, we do the conversion only once right after training. Then the training-time model can be discarded, and the resultant model has no conv branches. We only save and use the resultant model.

Contact

[email protected]

Google Scholar Profile: https://scholar.google.com/citations?user=CIjw0KoAAAAJ&hl=en

My open-sourced papers and repos:

The Structural Re-parameterization Universe:

  1. (preprint, 2021) A powerful MLP-style CNN building block
    RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition
    code.

  2. (CVPR 2021) A super simple and powerful VGG-style ConvNet architecture. Up to 83.55% ImageNet top-1 accuracy!
    RepVGG: Making VGG-style ConvNets Great Again
    code.

  3. (preprint, 2020) State-of-the-art channel pruning
    Lossless CNN Channel Pruning via Decoupling Remembering and Forgetting
    code.

  4. ACB (ICCV 2019) is a CNN component without any inference-time costs. The first work of our Structural Re-parameterization Universe.
    ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks.
    code.

  5. DBB (CVPR 2021) is a CNN component with higher performance than ACB and still no inference-time costs. Sometimes I call it ACNet v2 because "DBB" is 2 bits larger than "ACB" in ASCII (lol).
    Diverse Branch Block: Building a Convolution as an Inception-like Unit
    code.

Model compression and acceleration:

  1. (CVPR 2019) Channel pruning: Centripetal SGD for Pruning Very Deep Convolutional Networks with Complicated Structure
    code

  2. (ICML 2019) Channel pruning: Approximated Oracle Filter Pruning for Destructive CNN Width Optimization
    code

  3. (NeurIPS 2019) Unstructured pruning: Global Sparse Momentum SGD for Pruning Very Deep Neural Networks
    code

Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation

OSCAR Project Page | Paper This repository contains the codebase used in OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Ma

NVIDIA Research Projects 74 Dec 22, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
Dynamic wallpaper generator.

Wiki • About • Installation About This project is a dynamic wallpaper changer. It waits untill you turn on the music, downloads album cover if it's po

3 Sep 18, 2021
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
Implementation of OpenAI paper with Simple Noise Scale on Fastai V2

README Implementation of OpenAI paper "An Empirical Model of Large-Batch Training" for Fastai V2. The code is based on the batch size finder implement

13 Dec 10, 2021
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

18 Sep 01, 2022
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022