RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

Related tags

Deep LearningRepMLP
Overview

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch)

Paper: https://arxiv.org/abs/2105.01883

Citation:

@article{ding2021repmlp,
title={RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition},
author={Ding, Xiaohan and Zhang, Xiangyu and Han, Jungong and Ding, Guiguang},
journal={arXiv preprint arXiv:2105.01883},
year={2021}
}

How to use the code

If you want to use RepMLP as a building block in your model, just check repmlp.py. It also shows an example of checking the equivalence between a training-time and an inference-time RepMLP. You can see that by

python repmlp.py

Just use it like this

from repmlp.py import *
your_model = YourModel(...)   # It has RepMLPs somewhere
train(your_model)
deploy_model = repmlp_model_convert(your_model)
test(deploy_model)

From repmlp_model_convert, you will see that the conversion is as simple as calling switch_to_deploy of every RepMLP.

The definition of the two block structures (RepMLP Bottleneck and RepMLP Light) are shown in repmlp_blocks.py. The RepMLP-ResNet is defined in repmlp_resnet.py.

Use our pre-trained models

You may download our pre-trained models from Google Drive or Baidu Cloud (the access key of Baidu is "rmlp").

python test.py [imagenet-folder] train RepMLP-Res50-light-224_train.pth -a RepMLP-Res50-light-224

Here imagenet-folder should contain the "train" and "val" folders. The default input resolution is 224x224. Here "train" indicates the training-time architecture.

You may convert them into the inference-time structure and test again to check the equivalence. For example

python convert.py RepMLP-Res50-light-224_train.pth RepMLP-Res50-light-224_deploy.pth -a RepMLP-Res50-light-224
python test.py [imagenet-folder] deploy RepMLP-Res50-light-224_deploy.pth -a RepMLP-Res50-light-224

Now "deploy" indicates the inference-time structure (without Local Perceptron).

Abstract

We propose RepMLP, a multi-layer-perceptron-style neural network building block for image recognition, which is composed of a series of fully-connected (FC) layers. Compared to convolutional layers, FC layers are more efficient, better at modeling the long-range dependencies and positional patterns, but worse at capturing the local structures, hence usually less favored for image recognition. We propose a structural re-parameterization technique that adds local prior into an FC to make it powerful for image recognition. Specifically, we construct convolutional layers inside a RepMLP during training and merge them into the FC for inference. On CIFAR, a simple pure-MLP model shows performance very close to CNN. By inserting RepMLP in traditional CNN, we improve ResNets by 1.8% accuracy on ImageNet, 2.9% for face recognition, and 2.3% mIoU on Cityscapes with lower FLOPs. Our intriguing findings highlight that combining the global representational capacity and positional perception of FC with the local prior of convolution can improve the performance of neural network with faster speed on both the tasks with translation invariance (e.g., semantic segmentation) and those with aligned images and positional patterns (e.g., face recognition).

FAQs

Q: Is the inference-time model's output the same as the training-time model?

A: Yes. You can verify that by

python repmlp.py

Q: How to use RepMLP for other tasks?

A: It is better to finetune the training-time model on your datasets. Then you should do the conversion after finetuning and before you deploy the models. For example, say you want to use RepMLP-Res50 and PSPNet for semantic segmentation, you should build a PSPNet with a training-time RepMLP-Res50 as the backbone, load pre-trained weights into the backbone, and finetune the PSPNet on your segmentation dataset. Then you should convert the backbone following the code provided in this repo and keep the other task-specific structures (the PSPNet parts, in this case). The pseudo code will be like

#   train_backbone = create_xxx(deploy=False)
#   train_backbone.load_state_dict(torch.load(...))
#   train_pspnet = build_pspnet(backbone=train_backbone)
#   segmentation_train(train_pspnet)
#   deploy_pspnet = repmlp_model_convert(train_pspnet)
#   segmentation_test(deploy_pspnet)

Finetuning with a converted model also makes sense if you insert a BN after fc3, but the performance may be slightly lower.

Q: How to quantize a model with RepMLP?

A1: Post-training quantization. After training and conversion, you may quantize the converted model with any post-training quantization method. Then you may insert a BN after fc3 and finetune to recover the accuracy just like you quantize and finetune the other models. This is the recommended solution.

A2: Quantization-aware training. During the quantization-aware training, instead of constraining the params in a single kernel (e.g., making every param in {-127, -126, .., 126, 127} for int8) for ordinary models, you should constrain the equivalent kernel (get_equivalent_fc1_fc3_params() in repmlp.py).

Q: I tried to finetune your model with multiple GPUs but got an error. Why are the names of params like "stage1.0..." in the downloaded weight file but sometimes like "module.stage1.0..." (shown by nn.Module.named_parameters()) in my model?

A: DistributedDataParallel may prefix "module." to the name of params and cause a mismatch when loading weights by name. The simplest solution is to load the weights (model.load_state_dict(...)) before DistributedDataParallel(model). Otherwise, you may insert "module." before the names like this

checkpoint = torch.load(...)    # This is just a name-value dict
ckpt = {('module.' + k) : v for k, v in checkpoint.items()}
model.load_state_dict(ckpt)

Q: So a RepMLP derives the equivalent big fc kernel before each forwarding to save computations?

A: No! More precisely, we do the conversion only once right after training. Then the training-time model can be discarded, and the resultant model has no conv branches. We only save and use the resultant model.

Contact

[email protected]

Google Scholar Profile: https://scholar.google.com/citations?user=CIjw0KoAAAAJ&hl=en

My open-sourced papers and repos:

The Structural Re-parameterization Universe:

  1. (preprint, 2021) A powerful MLP-style CNN building block
    RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition
    code.

  2. (CVPR 2021) A super simple and powerful VGG-style ConvNet architecture. Up to 83.55% ImageNet top-1 accuracy!
    RepVGG: Making VGG-style ConvNets Great Again
    code.

  3. (preprint, 2020) State-of-the-art channel pruning
    Lossless CNN Channel Pruning via Decoupling Remembering and Forgetting
    code.

  4. ACB (ICCV 2019) is a CNN component without any inference-time costs. The first work of our Structural Re-parameterization Universe.
    ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks.
    code.

  5. DBB (CVPR 2021) is a CNN component with higher performance than ACB and still no inference-time costs. Sometimes I call it ACNet v2 because "DBB" is 2 bits larger than "ACB" in ASCII (lol).
    Diverse Branch Block: Building a Convolution as an Inception-like Unit
    code.

Model compression and acceleration:

  1. (CVPR 2019) Channel pruning: Centripetal SGD for Pruning Very Deep Convolutional Networks with Complicated Structure
    code

  2. (ICML 2019) Channel pruning: Approximated Oracle Filter Pruning for Destructive CNN Width Optimization
    code

  3. (NeurIPS 2019) Unstructured pruning: Global Sparse Momentum SGD for Pruning Very Deep Neural Networks
    code

A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone In our recent paper we propose the YourTTS model. YourTTS bri

Edresson Casanova 390 Dec 29, 2022
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc

Qitian Wu 42 Dec 27, 2022
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
Learning Compatible Embeddings, ICCV 2021

LCE Learning Compatible Embeddings, ICCV 2021 by Qiang Meng, Chixiang Zhang, Xiaoqiang Xu and Feng Zhou Paper: Arxiv We cannot release source codes pu

Qiang Meng 25 Dec 17, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling Transformer-based models are widely used in natural language processi

Zhanpeng Zeng 12 Jan 01, 2023
Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Kevin Bock 1.5k Jan 06, 2023
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022