RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

Related tags

Deep LearningRepMLP
Overview

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch)

Paper: https://arxiv.org/abs/2105.01883

Citation:

@article{ding2021repmlp,
title={RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition},
author={Ding, Xiaohan and Zhang, Xiangyu and Han, Jungong and Ding, Guiguang},
journal={arXiv preprint arXiv:2105.01883},
year={2021}
}

How to use the code

If you want to use RepMLP as a building block in your model, just check repmlp.py. It also shows an example of checking the equivalence between a training-time and an inference-time RepMLP. You can see that by

python repmlp.py

Just use it like this

from repmlp.py import *
your_model = YourModel(...)   # It has RepMLPs somewhere
train(your_model)
deploy_model = repmlp_model_convert(your_model)
test(deploy_model)

From repmlp_model_convert, you will see that the conversion is as simple as calling switch_to_deploy of every RepMLP.

The definition of the two block structures (RepMLP Bottleneck and RepMLP Light) are shown in repmlp_blocks.py. The RepMLP-ResNet is defined in repmlp_resnet.py.

Use our pre-trained models

You may download our pre-trained models from Google Drive or Baidu Cloud (the access key of Baidu is "rmlp").

python test.py [imagenet-folder] train RepMLP-Res50-light-224_train.pth -a RepMLP-Res50-light-224

Here imagenet-folder should contain the "train" and "val" folders. The default input resolution is 224x224. Here "train" indicates the training-time architecture.

You may convert them into the inference-time structure and test again to check the equivalence. For example

python convert.py RepMLP-Res50-light-224_train.pth RepMLP-Res50-light-224_deploy.pth -a RepMLP-Res50-light-224
python test.py [imagenet-folder] deploy RepMLP-Res50-light-224_deploy.pth -a RepMLP-Res50-light-224

Now "deploy" indicates the inference-time structure (without Local Perceptron).

Abstract

We propose RepMLP, a multi-layer-perceptron-style neural network building block for image recognition, which is composed of a series of fully-connected (FC) layers. Compared to convolutional layers, FC layers are more efficient, better at modeling the long-range dependencies and positional patterns, but worse at capturing the local structures, hence usually less favored for image recognition. We propose a structural re-parameterization technique that adds local prior into an FC to make it powerful for image recognition. Specifically, we construct convolutional layers inside a RepMLP during training and merge them into the FC for inference. On CIFAR, a simple pure-MLP model shows performance very close to CNN. By inserting RepMLP in traditional CNN, we improve ResNets by 1.8% accuracy on ImageNet, 2.9% for face recognition, and 2.3% mIoU on Cityscapes with lower FLOPs. Our intriguing findings highlight that combining the global representational capacity and positional perception of FC with the local prior of convolution can improve the performance of neural network with faster speed on both the tasks with translation invariance (e.g., semantic segmentation) and those with aligned images and positional patterns (e.g., face recognition).

FAQs

Q: Is the inference-time model's output the same as the training-time model?

A: Yes. You can verify that by

python repmlp.py

Q: How to use RepMLP for other tasks?

A: It is better to finetune the training-time model on your datasets. Then you should do the conversion after finetuning and before you deploy the models. For example, say you want to use RepMLP-Res50 and PSPNet for semantic segmentation, you should build a PSPNet with a training-time RepMLP-Res50 as the backbone, load pre-trained weights into the backbone, and finetune the PSPNet on your segmentation dataset. Then you should convert the backbone following the code provided in this repo and keep the other task-specific structures (the PSPNet parts, in this case). The pseudo code will be like

#   train_backbone = create_xxx(deploy=False)
#   train_backbone.load_state_dict(torch.load(...))
#   train_pspnet = build_pspnet(backbone=train_backbone)
#   segmentation_train(train_pspnet)
#   deploy_pspnet = repmlp_model_convert(train_pspnet)
#   segmentation_test(deploy_pspnet)

Finetuning with a converted model also makes sense if you insert a BN after fc3, but the performance may be slightly lower.

Q: How to quantize a model with RepMLP?

A1: Post-training quantization. After training and conversion, you may quantize the converted model with any post-training quantization method. Then you may insert a BN after fc3 and finetune to recover the accuracy just like you quantize and finetune the other models. This is the recommended solution.

A2: Quantization-aware training. During the quantization-aware training, instead of constraining the params in a single kernel (e.g., making every param in {-127, -126, .., 126, 127} for int8) for ordinary models, you should constrain the equivalent kernel (get_equivalent_fc1_fc3_params() in repmlp.py).

Q: I tried to finetune your model with multiple GPUs but got an error. Why are the names of params like "stage1.0..." in the downloaded weight file but sometimes like "module.stage1.0..." (shown by nn.Module.named_parameters()) in my model?

A: DistributedDataParallel may prefix "module." to the name of params and cause a mismatch when loading weights by name. The simplest solution is to load the weights (model.load_state_dict(...)) before DistributedDataParallel(model). Otherwise, you may insert "module." before the names like this

checkpoint = torch.load(...)    # This is just a name-value dict
ckpt = {('module.' + k) : v for k, v in checkpoint.items()}
model.load_state_dict(ckpt)

Q: So a RepMLP derives the equivalent big fc kernel before each forwarding to save computations?

A: No! More precisely, we do the conversion only once right after training. Then the training-time model can be discarded, and the resultant model has no conv branches. We only save and use the resultant model.

Contact

[email protected]

Google Scholar Profile: https://scholar.google.com/citations?user=CIjw0KoAAAAJ&hl=en

My open-sourced papers and repos:

The Structural Re-parameterization Universe:

  1. (preprint, 2021) A powerful MLP-style CNN building block
    RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition
    code.

  2. (CVPR 2021) A super simple and powerful VGG-style ConvNet architecture. Up to 83.55% ImageNet top-1 accuracy!
    RepVGG: Making VGG-style ConvNets Great Again
    code.

  3. (preprint, 2020) State-of-the-art channel pruning
    Lossless CNN Channel Pruning via Decoupling Remembering and Forgetting
    code.

  4. ACB (ICCV 2019) is a CNN component without any inference-time costs. The first work of our Structural Re-parameterization Universe.
    ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks.
    code.

  5. DBB (CVPR 2021) is a CNN component with higher performance than ACB and still no inference-time costs. Sometimes I call it ACNet v2 because "DBB" is 2 bits larger than "ACB" in ASCII (lol).
    Diverse Branch Block: Building a Convolution as an Inception-like Unit
    code.

Model compression and acceleration:

  1. (CVPR 2019) Channel pruning: Centripetal SGD for Pruning Very Deep Convolutional Networks with Complicated Structure
    code

  2. (ICML 2019) Channel pruning: Approximated Oracle Filter Pruning for Destructive CNN Width Optimization
    code

  3. (NeurIPS 2019) Unstructured pruning: Global Sparse Momentum SGD for Pruning Very Deep Neural Networks
    code

Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs ยป Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
User-friendly bulk RNAseq deconvolution using simulated annealing

Welcome to cellanneal - The user-friendly application for deconvolving omics data sets. cellanneal is an application for deconvolving biological mixtu

11 Dec 16, 2022
An Approach to Explore Logistic Regression Models

User-centered Regression An Approach to Explore Logistic Regression Models This tool applies the potential of Attribute-RadViz in identifying correlat

0 Nov 12, 2021
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

CC 4.4k Dec 27, 2022
Towards Multi-Camera 3D Human Pose Estimation in Wild Environment

PanopticStudio Toolbox This repository has a toolbox to download, process, and visualize the Panoptic Studio (Panoptic) data. Note: Sep-21-2020: Curre

335 Jan 09, 2023
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | ์žฅ์š”์—˜ 163 Dec 26, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
Character Controllers using Motion VAEs

Character Controllers using Motion VAEs This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at

Electronic Arts 165 Jan 03, 2023
Python implementation of ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images, AAAI2022.

ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images Binh M. Le & Simon S. Woo, "ADD:

2 Oct 24, 2022
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023