DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

Overview

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng, Wenjun Zhang

''Learn a digraph with matrix-valued edge weight for multi-agent perception.''

News

[2021-11] Our paper is availale on arxiv.

[2021-10] Our dataset V2X-Sim 1.0 is availale here.

[2021-09] 🔥 DiscoNet is accepted at NeurIPS 2021.

Abstract

To promote better performance-bandwidth trade-off for multi-agent perception, we propose a novel distilled collaboration graph (DiscoGraph) to model trainable, pose-aware, and adaptive collaboration among agents. Our key novelties lie in two aspects. First, we propose a teacher-student framework to train DiscoGraph via knowledge distillation. The teacher model employs an early collaboration with holistic-view inputs; the student model is based on intermediate collaboration with single-view inputs. Our framework trains DiscoGraph by constraining post-collaboration feature maps in the student model to match the correspondences in the teacher model. Second, we propose a matrix-valued edge weight in DiscoGraph. In such a matrix, each element reflects the inter-agent attention at a specific spatial region, allowing an agent to adaptively highlight the informative regions. During inference, we only need to use the student model named as the distilled collaboration network (DiscoNet). Attributed to the teacher-student framework, multiple agents with the shared DiscoNet could collaboratively approach the performance of a hypothetical teacher model with a holistic view. Our approach is validated on V2X-Sim 1.0, a large-scale multi-agent perception dataset that we synthesized using CARLA and SUMO co-simulation. Our quantitative and qualitative experiments in multi-agent 3D object detection show that DiscoNet could not only achieve a better performance-bandwidth trade-off than the state-of-the-art collaborative perception methods, but also bring more straightforward design rationale. Our code is available on https://github.com/ai4ce/DiscoNet.

Installation

Requirements

  • Linux (tested on Ubuntu 20.04)
  • Python 3.7
  • PyTorch 1.8.0
  • CUDA 11.2

Create Anaconda Environment

conda env create -f disco.yaml
conda activate disco

Dataset Preparation

Please download the training/val set V2X-Sim-1.0-trainval.

NOTICE: The training/val data generation script is currently not avaliable, you can either use the raw data on V2X-Sim 1.0 or the provided training/val set in your experiments. Please send us an access request with your affiliation and role, and we will grant the access.

Training Commands

python train_codet.py [--data PATH_TO_DATA] [--bound BOUND] [--com COM]
               [--batch BATCH] [--nepoch NEPOCH] [--lr LEARNING_RATE] 
               [--kd_flag KD_FLAG] [--resume_teacher PATH_TO_TRACHER_MODEL]
--bound BOUND       
                    Input data to the collaborative perception model. Options: "lowerbound" for 
                    no-collaboration or intermediate-collaboration, "upperbound" for early collaboration.
--com COM   
                    Intermediate collaboration strategy. Options: "disco" for our DiscoNet,
                    "v2v/when2com//sum/mean/max/cat/agent" for other methods, '' for early or no collaboration.
--data PATH_TO_DATA         
                    Set as YOUR_PATH_TO_DATASET/V2X-Sim-1.0-trainval/train
--kd_flag FLAG
                    Whether to use knowledge distillation. 1 for true and 0 for false.
--resume_teacher PATH_TO_TRACHER_MODEL 
                    The pretrained early-collaboration-based teacher model.

Evaluation Commands

python test_codet.py [--data PATH_TO_DATA] [--bound BOUND] [--com COM] [--resume PATH_TO_YOUR_MODEL]
--bound BOUND       
                    Input data to the collaborative perception model. Options: "lowerbound" for 
                    no-collaboration or intermediate-collaboration, "upperbound" for early collaboration.
--com COM   
                    Intermediate collaboration strategy. Options: "disco" for our DiscoNet,
                    "v2v/when2com//sum/mean/max/cat/agent" for other methods, '' for early or no collaboration.
--data PATH_TO_DATA         
                    Set as YOUR_PATH_TO_DATASET/V2X-Sim-1.0-trainval/test
--resume PATH_TO_YOUR_MODEL 
                    The trained model for evaluation.

The teacher model can be downloaded here, and our DiscoNet model can can be downloaded here.

Acknowledgment

This project is not possible without the following great codebases.

Citation

If you find V2X-Sim 1.0 or DiscoNet useful in your research, please cite our paper.

@InProceedings{Li_2021_NeurIPS,
    title = {Learning Distilled Collaboration Graph for Multi-Agent Perception},
    author = {Li, Yiming and Ren, Shunli and Wu, Pengxiang and Chen, Siheng and Feng, Chen and Zhang, Wenjun},
    booktitle = {Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS 2021)},
    year = {2021}
}
Owner
Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU
Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU
End-To-End Memory Network using Tensorflow

MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo

Dominique Luna 339 Oct 27, 2022
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022

Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any

yueliu1999 109 Dec 23, 2022
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
Sign Language Transformers (CVPR'20)

Sign Language Transformers (CVPR'20) This repo contains the training and evaluation code for the paper Sign Language Transformers: Sign Language Trans

Necati Cihan Camgoz 164 Dec 30, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022