DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

Overview

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng, Wenjun Zhang

''Learn a digraph with matrix-valued edge weight for multi-agent perception.''

News

[2021-11] Our paper is availale on arxiv.

[2021-10] Our dataset V2X-Sim 1.0 is availale here.

[2021-09] 🔥 DiscoNet is accepted at NeurIPS 2021.

Abstract

To promote better performance-bandwidth trade-off for multi-agent perception, we propose a novel distilled collaboration graph (DiscoGraph) to model trainable, pose-aware, and adaptive collaboration among agents. Our key novelties lie in two aspects. First, we propose a teacher-student framework to train DiscoGraph via knowledge distillation. The teacher model employs an early collaboration with holistic-view inputs; the student model is based on intermediate collaboration with single-view inputs. Our framework trains DiscoGraph by constraining post-collaboration feature maps in the student model to match the correspondences in the teacher model. Second, we propose a matrix-valued edge weight in DiscoGraph. In such a matrix, each element reflects the inter-agent attention at a specific spatial region, allowing an agent to adaptively highlight the informative regions. During inference, we only need to use the student model named as the distilled collaboration network (DiscoNet). Attributed to the teacher-student framework, multiple agents with the shared DiscoNet could collaboratively approach the performance of a hypothetical teacher model with a holistic view. Our approach is validated on V2X-Sim 1.0, a large-scale multi-agent perception dataset that we synthesized using CARLA and SUMO co-simulation. Our quantitative and qualitative experiments in multi-agent 3D object detection show that DiscoNet could not only achieve a better performance-bandwidth trade-off than the state-of-the-art collaborative perception methods, but also bring more straightforward design rationale. Our code is available on https://github.com/ai4ce/DiscoNet.

Installation

Requirements

  • Linux (tested on Ubuntu 20.04)
  • Python 3.7
  • PyTorch 1.8.0
  • CUDA 11.2

Create Anaconda Environment

conda env create -f disco.yaml
conda activate disco

Dataset Preparation

Please download the training/val set V2X-Sim-1.0-trainval.

NOTICE: The training/val data generation script is currently not avaliable, you can either use the raw data on V2X-Sim 1.0 or the provided training/val set in your experiments. Please send us an access request with your affiliation and role, and we will grant the access.

Training Commands

python train_codet.py [--data PATH_TO_DATA] [--bound BOUND] [--com COM]
               [--batch BATCH] [--nepoch NEPOCH] [--lr LEARNING_RATE] 
               [--kd_flag KD_FLAG] [--resume_teacher PATH_TO_TRACHER_MODEL]
--bound BOUND       
                    Input data to the collaborative perception model. Options: "lowerbound" for 
                    no-collaboration or intermediate-collaboration, "upperbound" for early collaboration.
--com COM   
                    Intermediate collaboration strategy. Options: "disco" for our DiscoNet,
                    "v2v/when2com//sum/mean/max/cat/agent" for other methods, '' for early or no collaboration.
--data PATH_TO_DATA         
                    Set as YOUR_PATH_TO_DATASET/V2X-Sim-1.0-trainval/train
--kd_flag FLAG
                    Whether to use knowledge distillation. 1 for true and 0 for false.
--resume_teacher PATH_TO_TRACHER_MODEL 
                    The pretrained early-collaboration-based teacher model.

Evaluation Commands

python test_codet.py [--data PATH_TO_DATA] [--bound BOUND] [--com COM] [--resume PATH_TO_YOUR_MODEL]
--bound BOUND       
                    Input data to the collaborative perception model. Options: "lowerbound" for 
                    no-collaboration or intermediate-collaboration, "upperbound" for early collaboration.
--com COM   
                    Intermediate collaboration strategy. Options: "disco" for our DiscoNet,
                    "v2v/when2com//sum/mean/max/cat/agent" for other methods, '' for early or no collaboration.
--data PATH_TO_DATA         
                    Set as YOUR_PATH_TO_DATASET/V2X-Sim-1.0-trainval/test
--resume PATH_TO_YOUR_MODEL 
                    The trained model for evaluation.

The teacher model can be downloaded here, and our DiscoNet model can can be downloaded here.

Acknowledgment

This project is not possible without the following great codebases.

Citation

If you find V2X-Sim 1.0 or DiscoNet useful in your research, please cite our paper.

@InProceedings{Li_2021_NeurIPS,
    title = {Learning Distilled Collaboration Graph for Multi-Agent Perception},
    author = {Li, Yiming and Ren, Shunli and Wu, Pengxiang and Chen, Siheng and Feng, Chen and Zhang, Wenjun},
    booktitle = {Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS 2021)},
    year = {2021}
}
Owner
Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU
Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU
This is the official github repository of the Met dataset

The Met dataset This is the official github repository of the Met dataset. The official webpage of the dataset can be found here. What is it? This cod

Nikolaos-Antonios Ypsilantis 35 Dec 17, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
Final report with code for KAIST Course KSE 801.

Orthogonal collocation is a method for the numerical solution of partial differential equations

Chuanbo HUA 4 Apr 06, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

1.4k Jan 01, 2023
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022