Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

Overview

Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

This repository is the official implementation for the following paper Analytic-LISTA networks proposed in the following paper:

"Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently" by Xiaohan Chen, Jason Zhang and Zhangyang Wang from the VITA Research Group.

The code implements the Peek-a-Boo (PaB) algorithm for various convolutional networks and is tested in Linux environment with Python: 3.7.2, PyTorch 1.7.0+.

Getting Started

Dependency

pip install tqdm

Prerequisites

  • Python 3.7+
  • PyTorch 1.7.0+
  • tqdm

Data Preparation

To run ImageNet experiments, download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val/ folder respectively as shown below. A useful script for automatic extraction can be found here.

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

How to Run Experiments

CIFAR-10/100 Experiments

To apply PaB w/ PSG to a ResNet-18 network on CIFAR-10/100 datasets, use the following command:

python main.py --use-cuda 0 \
    --arch PsgResNet18 --init-method kaiming_normal \
    --optimizer BOP --ar 1e-3 --tau 1e-6 \
    --ar-decay-freq 45 --ar-decay-ratio 0.15 --epochs 180 \
    --pruner SynFlow --prune-epoch 0 \
    --prune-ratio 3e-1 --prune-iters 100 \
    --msb-bits 8 --msb-bits-weight 8 --msb-bits-grad 16 \
    --psg-threshold 1e-7 --psg-no-take-sign --psg-sparsify \
    --exp-name cifar10_resnet18_pab-psg

To break down the above complex command, PaB includes two stages (pruning and Bop training) and consists of three components (a pruner, a Bop optimizer and a PSG module).

[Pruning module] The pruning module is controlled by the following arguments:

  • --pruner - A string that indicates which pruning method to be used. Valid choices are ['Mag', 'SNIP', 'GraSP', 'SynFlow'].
  • --prune-epoch - An integer, the epoch index of when (the last) pruning is performed.
  • --prune-ratio - A float, the ratio of non-zero parameters remained after (the last) pruning
  • --prune-iters - An integeer, the number of pruning iterations in one run of pruning. Check the SynFlow paper for what this means.

[Bop optimizer] Bop has several hyperparameters that are essential to its successful optimizaiton as shown below. More details can be found in the original Bop paper.

  • --optimizer - A string that specifies the Bop optimizer. You can pass 'SGD' to this argument for a standard training of SGD. Check here.
  • --ar - A float, corresponding to the adativity rate for the calculation of gradient moving average.
  • --tau - A float, corresponding to the threshold that decides if a binary weight needs to be flipped.
  • --ar-decay-freq - An integer, interval in epochs between decays of the adaptivity ratio.
  • --ar-decay-ratio - A float, the decay ratio of the adaptivity ratio decaying.

[PSG module] PSG stands for Predictive Sign Gradient, which was originally proposed in the E2-Train paper. PSG uses low-precision computation during backward passes to save computational cost. It is controlled by several arguments.

  • --msb-bits, --msb-bits-weight, --msb-bits-grad - Three floats, the bit-width for the inputs, weights and output errors during back-propagation.
  • --psg-threshold - A float, the threshold that filters out coarse gradients with small magnitudes to reduce gradient variance.
  • --psg-no-take-sign - A boolean that indicates to bypass the "taking-the-sign" step in the original PSG method.
  • --psg-sparsify - A boolean. The filtered small gradients are set to zero when it is true.

ImageNet Experiments

For PaB experiments on ImageNet, we run the pruning and Bop training in a two-stage manner, implemented in main_imagenet_prune.py and main_imagenet_train.py, respectively.

To prune a ResNet-50 network at its initialization, we first run the following command to perform SynFlow, which follows a similar manner for the arguments as in CIFAR experiments:

export prune_ratio=0.5  # 50% remaining parameters.

# Run SynFlow pruning
python main_imagenet_prune.py \
    --arch resnet50 --init-method kaiming_normal \
    --pruner SynFlow --prune-epoch 0 \
    --prune-ratio $prune_ratio --prune-iters 100 \
    --pruned-save-name /path/to/the/pruning/output/file \
    --seed 0 --workers 32 /path/to/the/imagenet/dataset

We then train the pruned model using Bop with PSG on one node with multi-GPUs.

# Bop hyperparameters
export bop_ar=1e-3
export bop_tau=1e-6
export psg_threshold="-5e-7"

python main_imagenet_train.py \
    --arch psg_resnet50 --init-method kaiming_normal \
    --optimizer BOP --ar $bop_ar --tau $bop_tau \
    --ar-decay-freq 30 --ar-decay-ratio 0.15 --epochs 100 \
    --msb-bits 8 --msb-bits-weight 8 --msb-bits-grad 16 \
    --psg-sparsify --psg-threshold " ${psg_threshold}" --psg-no-take-sign \
    --savedir /path/to/the/output/dir \
    --resume /path/to/the/pruning/output/file \
    --exp-name 'imagenet_resnet50_pab-psg' \
    --dist-url 'tcp://127.0.0.1:2333' \
    --dist-backend 'nccl' --multiprocessing-distributed \
    --world-size 1 --rank 0 \
    --seed 0 --workers 32 /path/to/the/imagenet/dataset 

Acknowledgement

Thank you to Jason Zhang for helping with the development of the code repo, the research that we conducted with it and the consistent report after his movement to CMU. Thank you to Prof. Zhangyang Wang for the guidance and unreserved help with this project.

Cite this work

If you find this work or our code implementation helpful for your own resarch or work, please cite our paper.

@inproceedings{
chen2022peek,
title={Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently},
author={Xiaohan Chen and Jason Zhang and Zhangyang Wang},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=moHCzz6D5H3},
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation'

OD-Rec Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation' Paper, saved teacher models and Andro

Xin Xia 11 Nov 22, 2022
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
202 Jan 06, 2023
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration

GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co

Sharc-Lab 19 Dec 15, 2022
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
Space Ship Simulator using python

FlyOver Basic space-ship simulator using python How to run? Just double click run.py What modules do i need? All modules that i currently using is bui

0 Oct 09, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022