Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

Overview

Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

This repository is the official implementation for the following paper Analytic-LISTA networks proposed in the following paper:

"Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently" by Xiaohan Chen, Jason Zhang and Zhangyang Wang from the VITA Research Group.

The code implements the Peek-a-Boo (PaB) algorithm for various convolutional networks and is tested in Linux environment with Python: 3.7.2, PyTorch 1.7.0+.

Getting Started

Dependency

pip install tqdm

Prerequisites

  • Python 3.7+
  • PyTorch 1.7.0+
  • tqdm

Data Preparation

To run ImageNet experiments, download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val/ folder respectively as shown below. A useful script for automatic extraction can be found here.

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

How to Run Experiments

CIFAR-10/100 Experiments

To apply PaB w/ PSG to a ResNet-18 network on CIFAR-10/100 datasets, use the following command:

python main.py --use-cuda 0 \
    --arch PsgResNet18 --init-method kaiming_normal \
    --optimizer BOP --ar 1e-3 --tau 1e-6 \
    --ar-decay-freq 45 --ar-decay-ratio 0.15 --epochs 180 \
    --pruner SynFlow --prune-epoch 0 \
    --prune-ratio 3e-1 --prune-iters 100 \
    --msb-bits 8 --msb-bits-weight 8 --msb-bits-grad 16 \
    --psg-threshold 1e-7 --psg-no-take-sign --psg-sparsify \
    --exp-name cifar10_resnet18_pab-psg

To break down the above complex command, PaB includes two stages (pruning and Bop training) and consists of three components (a pruner, a Bop optimizer and a PSG module).

[Pruning module] The pruning module is controlled by the following arguments:

  • --pruner - A string that indicates which pruning method to be used. Valid choices are ['Mag', 'SNIP', 'GraSP', 'SynFlow'].
  • --prune-epoch - An integer, the epoch index of when (the last) pruning is performed.
  • --prune-ratio - A float, the ratio of non-zero parameters remained after (the last) pruning
  • --prune-iters - An integeer, the number of pruning iterations in one run of pruning. Check the SynFlow paper for what this means.

[Bop optimizer] Bop has several hyperparameters that are essential to its successful optimizaiton as shown below. More details can be found in the original Bop paper.

  • --optimizer - A string that specifies the Bop optimizer. You can pass 'SGD' to this argument for a standard training of SGD. Check here.
  • --ar - A float, corresponding to the adativity rate for the calculation of gradient moving average.
  • --tau - A float, corresponding to the threshold that decides if a binary weight needs to be flipped.
  • --ar-decay-freq - An integer, interval in epochs between decays of the adaptivity ratio.
  • --ar-decay-ratio - A float, the decay ratio of the adaptivity ratio decaying.

[PSG module] PSG stands for Predictive Sign Gradient, which was originally proposed in the E2-Train paper. PSG uses low-precision computation during backward passes to save computational cost. It is controlled by several arguments.

  • --msb-bits, --msb-bits-weight, --msb-bits-grad - Three floats, the bit-width for the inputs, weights and output errors during back-propagation.
  • --psg-threshold - A float, the threshold that filters out coarse gradients with small magnitudes to reduce gradient variance.
  • --psg-no-take-sign - A boolean that indicates to bypass the "taking-the-sign" step in the original PSG method.
  • --psg-sparsify - A boolean. The filtered small gradients are set to zero when it is true.

ImageNet Experiments

For PaB experiments on ImageNet, we run the pruning and Bop training in a two-stage manner, implemented in main_imagenet_prune.py and main_imagenet_train.py, respectively.

To prune a ResNet-50 network at its initialization, we first run the following command to perform SynFlow, which follows a similar manner for the arguments as in CIFAR experiments:

export prune_ratio=0.5  # 50% remaining parameters.

# Run SynFlow pruning
python main_imagenet_prune.py \
    --arch resnet50 --init-method kaiming_normal \
    --pruner SynFlow --prune-epoch 0 \
    --prune-ratio $prune_ratio --prune-iters 100 \
    --pruned-save-name /path/to/the/pruning/output/file \
    --seed 0 --workers 32 /path/to/the/imagenet/dataset

We then train the pruned model using Bop with PSG on one node with multi-GPUs.

# Bop hyperparameters
export bop_ar=1e-3
export bop_tau=1e-6
export psg_threshold="-5e-7"

python main_imagenet_train.py \
    --arch psg_resnet50 --init-method kaiming_normal \
    --optimizer BOP --ar $bop_ar --tau $bop_tau \
    --ar-decay-freq 30 --ar-decay-ratio 0.15 --epochs 100 \
    --msb-bits 8 --msb-bits-weight 8 --msb-bits-grad 16 \
    --psg-sparsify --psg-threshold " ${psg_threshold}" --psg-no-take-sign \
    --savedir /path/to/the/output/dir \
    --resume /path/to/the/pruning/output/file \
    --exp-name 'imagenet_resnet50_pab-psg' \
    --dist-url 'tcp://127.0.0.1:2333' \
    --dist-backend 'nccl' --multiprocessing-distributed \
    --world-size 1 --rank 0 \
    --seed 0 --workers 32 /path/to/the/imagenet/dataset 

Acknowledgement

Thank you to Jason Zhang for helping with the development of the code repo, the research that we conducted with it and the consistent report after his movement to CMU. Thank you to Prof. Zhangyang Wang for the guidance and unreserved help with this project.

Cite this work

If you find this work or our code implementation helpful for your own resarch or work, please cite our paper.

@inproceedings{
chen2022peek,
title={Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently},
author={Xiaohan Chen and Jason Zhang and Zhangyang Wang},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=moHCzz6D5H3},
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
A Python library that provides a simplified alternative to DBAPI 2

A Python library that provides a simplified alternative to DBAPI 2. It provides a facade in front of DBAPI 2 drivers.

Tony Locke 44 Nov 17, 2021
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
SMCA replication There are no extra compiled components in SMCA DETR and package dependencies are minimal

Usage There are no extra compiled components in SMCA DETR and package dependencies are minimal, so the code is very simple to use. We provide instruct

22 May 06, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
Realtime micro-expression recognition using OpenCV and PyTorch

Micro-expression Recognition Realtime micro-expression recognition from scratch using OpenCV and PyTorch Try it out with a webcam or video using the e

Irfan 35 Dec 05, 2022
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

Ibai Gorordo 18 Nov 06, 2022
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022
This repository contains the source code for the paper First Order Motion Model for Image Animation

!!! Check out our new paper and framework improved for articulated objects First Order Motion Model for Image Animation This repository contains the s

13k Jan 09, 2023
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022