Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Overview

Self-supervised learning

Paper Conference

CI testing

Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses. The idea is to learn a representation which can discriminate between negative examples and be as close as possible to augmentations and transformations of itself. In this approach, we first train a ResNet on the unlabeled dataset which is then fine-tuned on a relatively small labeled one. This approach drastically reduces the amount of labeled data required, a big problem in applying deep learning in the real world. Surprisingly, this approach actually leads to increase in robustness as well as raw performance, when compared to fully supervised counterparts, even with the same architecture.

In case, the user wants to skip the pre-training part, the pre-trained weights can be downloaded from here to use for fine-tuning tasks and directly skip to the second part of the tutorial which is using the 'ssl_finetune_train.py'.

Steps to run the tutorial

1.) Download the two datasets TCIA-Covid19 & BTCV (More detail about them in the Data section)
2.) Modify the paths for data_root, json_path & logdir in ssl_script_train.py
3.) Run the 'ssl_script_train.py'
4.) Modify the paths for data_root, json_path, pre-trained_weights_path from 2.) and logdir_path in 'ssl_finetuning_train.py'
5.) Run the 'ssl_finetuning_script.py'
6.) And that's all folks, use the model to your needs

1.Data

Pre-training Dataset: The TCIA Covid-19 dataset was used for generating the pre-trained weights. The dataset contains a total of 771 3D CT Volumes. The volumes were split into training and validation sets of 600 and 171 3D volumes correspondingly. The data is available for download at this link. If this dataset is being used in your work, please use [1] as reference. A json file is provided which contains the training and validation splits that were used for the training. The json file can be found in the json_files directory of the self-supervised training tutorial.

Fine-tuning Dataset: The dataset from Beyond the Cranial Vault Challenge (BTCV) 2015 hosted at MICCAI, was used as a fully supervised fine-tuning task on the pre-trained weights. The dataset consists of 30 3D Volumes with annotated labels of up to 13 different organs [2]. There are 3 json files provided in the json_files directory for the dataset. They correspond to having different number of training volumes ranging from 6, 12 and 24. All 3 json files have the same validation split.

References:

1.) Harmon, Stephanie A., et al. "Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets." Nature communications 11.1 (2020): 1-7.

2.) Tang, Yucheng, et al. "High-resolution 3D abdominal segmentation with random patch network fusion." Medical Image Analysis 69 (2021): 101894.

2. Network Architectures

For pre-training a modified version of ViT [1] has been used, it can be referred here from MONAI. The original ViT was modified by attachment of two 3D Convolutional Transpose Layers to achieve a similar reconstruction size as that of the input image. The ViT is the backbone for the UNETR [2] network architecture which was used for the fine-tuning fully supervised tasks.

The pre-trained backbone of ViT weights were loaded to UNETR and the decoder head still relies on random initialization for adaptability of the new downstream task. This flexibility also allows the user to adapt the ViT backbone to their own custom created network architectures as well.

References:

1.) Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929 (2020).

2.) Hatamizadeh, Ali, et al. "Unetr: Transformers for 3d medical image segmentation." arXiv preprint arXiv:2103.10504 (2021).

3. Self-supervised Tasks

The pre-training pipeline has two aspects to it (Refer figure shown below). First, it uses augmentation (top row) to mutate the data and second, it utilizes regularized contrastive loss [3] to learn feature representations of the unlabeled data. The multiple augmentations are applied on a randomly selected 3D foreground patch from a 3D volume. Two augmented views of the same 3D patch are generated for the contrastive loss as it functions by drawing the two augmented views closer to each other if the views are generated from the same patch, if not then it tries to maximize the disagreement. The CL offers this functionality on a mini-batch.

image

The augmentations mutate the 3D patch in various ways, the primary task of the network is to reconstruct the original image. The different augmentations used are classical techniques such as in-painting [1], out-painting [1] and noise augmentation to the image by local pixel shuffling [2]. The secondary task of the network is to simultaneously reconstruct the two augmented views as similar to each other as possible via regularized contrastive loss [3] as its objective is to maximize the agreement. The term regularized has been used here because contrastive loss is adjusted by the reconstruction loss as a dynamic weight itself.

The below example image depicts the usage of the augmentation pipeline where two augmented views are drawn of the same 3D patch:

image

Multiple axial slices of a 96x96x96 patch are shown before the augmentation (Ref Original Patch in the above figure). Augmented View 1 & 2 are different augmentations generated via the transforms on the same cubic patch. The objective of the SSL network is to reconstruct the original top row image from the first view. The contrastive loss is driven by maximizing agreement of the reconstruction based on input of the two augmented views. matshow3d from monai.visualize was used for creating this figure, a tutorial for using can be found here

References:

1.) Pathak, Deepak, et al. "Context encoders: Feature learning by inpainting." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

2.) Chen, Liang, et al. "Self-supervised learning for medical image analysis using image context restoration." Medical image analysis 58 (2019): 101539.

3.) Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.

4. Experiment Hyper-parameters

Training Hyper-Parameters for SSL:
Epochs: 300
Validation Frequency: 2
Learning Rate: 1e-4
Batch size: 4 3D Volumes (Total of 8 as 2 samples were drawn per 3D Volume)
Loss Function: L1 Contrastive Loss Temperature: 0.005

Training Hyper-parameters for Fine-tuning BTCV task (All settings have been kept consistent with prior UNETR 3D Segmentation tutorial):
Number of Steps: 30000
Validation Frequency: 100 steps
Batch Size: 1 3D Volume (4 samples are drawn per 3D volume)
Learning Rate: 1e-4
Loss Function: DiceCELoss

4. Training & Validation Curves for pre-training SSL

image

L1 error reported for training and validation when performing the SSL training. Please note contrastive loss is not L1.

5. Results of the Fine-tuning vs Random Initialization on BTCV

Training Volumes Validation Volumes Random Init Dice score Pre-trained Dice Score Relative Performance Improvement
6 6 63.07 70.09 ~11.13%
12 6 76.06 79.55 ~4.58%
24 6 78.91 82.30 ~4.29%

Citation

@article{Arijit Das,
  title={Self-supervised learning for medical data},
  author={Arijit Das},
  journal={https://github.com/das-projects/selfsupervised-learning},
  year={2020}
}
Owner
Arijit Das
Data Scientist who is passionate about developing and implementing robust and explainable Machine Learning algorithms.
Arijit Das
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet · Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
Database Reasoning Over Text project for ACL paper

Database Reasoning over Text This repository contains the code for the Database Reasoning Over Text paper, to appear at ACL2021. Work is performed in

Facebook Research 320 Dec 12, 2022
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more

Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play

Surag Nair 3.1k Jan 05, 2023
PyTorch trainer and model for Sequence Classification

PyTorch-trainer-and-model-for-Sequence-Classification After cloning the repository, modify your training data so that the training data is a .csv file

NhanTieu 2 Dec 09, 2022
Official implementation of the ICML2021 paper "Elastic Graph Neural Networks"

ElasticGNN This repository includes the official implementation of ElasticGNN in the paper "Elastic Graph Neural Networks" [ICML 2021]. Xiaorui Liu, W

liuxiaorui 34 Dec 04, 2022
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T

AI Secure 14 Oct 12, 2022
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha

Mohamad Shahbazi 33 Dec 06, 2022
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Deep Residual Learning for Image Recognition

Deep Residual Learning for Image Recognition This is a Torch implementation of "Deep Residual Learning for Image Recognition",Kaiming He, Xiangyu Zhan

Kimmy 561 Dec 01, 2022
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022
Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution.

convolver Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution. Created by Sean Higley

Sean Higley 1 Feb 23, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques

Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques This repository is derived from the NMTGMinor

Tu Anh Dinh 1 Sep 07, 2022
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022