Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Overview

Self-supervised learning

Paper Conference

CI testing

Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses. The idea is to learn a representation which can discriminate between negative examples and be as close as possible to augmentations and transformations of itself. In this approach, we first train a ResNet on the unlabeled dataset which is then fine-tuned on a relatively small labeled one. This approach drastically reduces the amount of labeled data required, a big problem in applying deep learning in the real world. Surprisingly, this approach actually leads to increase in robustness as well as raw performance, when compared to fully supervised counterparts, even with the same architecture.

In case, the user wants to skip the pre-training part, the pre-trained weights can be downloaded from here to use for fine-tuning tasks and directly skip to the second part of the tutorial which is using the 'ssl_finetune_train.py'.

Steps to run the tutorial

1.) Download the two datasets TCIA-Covid19 & BTCV (More detail about them in the Data section)
2.) Modify the paths for data_root, json_path & logdir in ssl_script_train.py
3.) Run the 'ssl_script_train.py'
4.) Modify the paths for data_root, json_path, pre-trained_weights_path from 2.) and logdir_path in 'ssl_finetuning_train.py'
5.) Run the 'ssl_finetuning_script.py'
6.) And that's all folks, use the model to your needs

1.Data

Pre-training Dataset: The TCIA Covid-19 dataset was used for generating the pre-trained weights. The dataset contains a total of 771 3D CT Volumes. The volumes were split into training and validation sets of 600 and 171 3D volumes correspondingly. The data is available for download at this link. If this dataset is being used in your work, please use [1] as reference. A json file is provided which contains the training and validation splits that were used for the training. The json file can be found in the json_files directory of the self-supervised training tutorial.

Fine-tuning Dataset: The dataset from Beyond the Cranial Vault Challenge (BTCV) 2015 hosted at MICCAI, was used as a fully supervised fine-tuning task on the pre-trained weights. The dataset consists of 30 3D Volumes with annotated labels of up to 13 different organs [2]. There are 3 json files provided in the json_files directory for the dataset. They correspond to having different number of training volumes ranging from 6, 12 and 24. All 3 json files have the same validation split.

References:

1.) Harmon, Stephanie A., et al. "Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets." Nature communications 11.1 (2020): 1-7.

2.) Tang, Yucheng, et al. "High-resolution 3D abdominal segmentation with random patch network fusion." Medical Image Analysis 69 (2021): 101894.

2. Network Architectures

For pre-training a modified version of ViT [1] has been used, it can be referred here from MONAI. The original ViT was modified by attachment of two 3D Convolutional Transpose Layers to achieve a similar reconstruction size as that of the input image. The ViT is the backbone for the UNETR [2] network architecture which was used for the fine-tuning fully supervised tasks.

The pre-trained backbone of ViT weights were loaded to UNETR and the decoder head still relies on random initialization for adaptability of the new downstream task. This flexibility also allows the user to adapt the ViT backbone to their own custom created network architectures as well.

References:

1.) Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929 (2020).

2.) Hatamizadeh, Ali, et al. "Unetr: Transformers for 3d medical image segmentation." arXiv preprint arXiv:2103.10504 (2021).

3. Self-supervised Tasks

The pre-training pipeline has two aspects to it (Refer figure shown below). First, it uses augmentation (top row) to mutate the data and second, it utilizes regularized contrastive loss [3] to learn feature representations of the unlabeled data. The multiple augmentations are applied on a randomly selected 3D foreground patch from a 3D volume. Two augmented views of the same 3D patch are generated for the contrastive loss as it functions by drawing the two augmented views closer to each other if the views are generated from the same patch, if not then it tries to maximize the disagreement. The CL offers this functionality on a mini-batch.

image

The augmentations mutate the 3D patch in various ways, the primary task of the network is to reconstruct the original image. The different augmentations used are classical techniques such as in-painting [1], out-painting [1] and noise augmentation to the image by local pixel shuffling [2]. The secondary task of the network is to simultaneously reconstruct the two augmented views as similar to each other as possible via regularized contrastive loss [3] as its objective is to maximize the agreement. The term regularized has been used here because contrastive loss is adjusted by the reconstruction loss as a dynamic weight itself.

The below example image depicts the usage of the augmentation pipeline where two augmented views are drawn of the same 3D patch:

image

Multiple axial slices of a 96x96x96 patch are shown before the augmentation (Ref Original Patch in the above figure). Augmented View 1 & 2 are different augmentations generated via the transforms on the same cubic patch. The objective of the SSL network is to reconstruct the original top row image from the first view. The contrastive loss is driven by maximizing agreement of the reconstruction based on input of the two augmented views. matshow3d from monai.visualize was used for creating this figure, a tutorial for using can be found here

References:

1.) Pathak, Deepak, et al. "Context encoders: Feature learning by inpainting." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

2.) Chen, Liang, et al. "Self-supervised learning for medical image analysis using image context restoration." Medical image analysis 58 (2019): 101539.

3.) Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.

4. Experiment Hyper-parameters

Training Hyper-Parameters for SSL:
Epochs: 300
Validation Frequency: 2
Learning Rate: 1e-4
Batch size: 4 3D Volumes (Total of 8 as 2 samples were drawn per 3D Volume)
Loss Function: L1 Contrastive Loss Temperature: 0.005

Training Hyper-parameters for Fine-tuning BTCV task (All settings have been kept consistent with prior UNETR 3D Segmentation tutorial):
Number of Steps: 30000
Validation Frequency: 100 steps
Batch Size: 1 3D Volume (4 samples are drawn per 3D volume)
Learning Rate: 1e-4
Loss Function: DiceCELoss

4. Training & Validation Curves for pre-training SSL

image

L1 error reported for training and validation when performing the SSL training. Please note contrastive loss is not L1.

5. Results of the Fine-tuning vs Random Initialization on BTCV

Training Volumes Validation Volumes Random Init Dice score Pre-trained Dice Score Relative Performance Improvement
6 6 63.07 70.09 ~11.13%
12 6 76.06 79.55 ~4.58%
24 6 78.91 82.30 ~4.29%

Citation

@article{Arijit Das,
  title={Self-supervised learning for medical data},
  author={Arijit Das},
  journal={https://github.com/das-projects/selfsupervised-learning},
  year={2020}
}
Owner
Arijit Das
Data Scientist who is passionate about developing and implementing robust and explainable Machine Learning algorithms.
Arijit Das
Semantic Segmentation with SegFormer on Drone Dataset.

SegFormer_Segmentation Semantic Segmentation with SegFormer on Drone Dataset. You can check out the blog on Medium You can also try out the model with

Praneet 8 Oct 20, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
It helps user to learn Pick-up lines and share if he has a better one

Pick-up-Lines-Generator(Open Source) It helps user to learn Pick-up lines Share and Add one or many to the DataBase Unique SQLite DataBase AI Undercon

knock_nott 0 May 04, 2022
2 Jul 19, 2022
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U

Bing Li 81 Dec 14, 2022
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
Learning from graph data using Keras

Steps to run = Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data unzip the files in the folder input/cora cd code python eda

Mansar Youness 64 Nov 16, 2022
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022