Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Overview

Self-supervised learning

Paper Conference

CI testing

Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses. The idea is to learn a representation which can discriminate between negative examples and be as close as possible to augmentations and transformations of itself. In this approach, we first train a ResNet on the unlabeled dataset which is then fine-tuned on a relatively small labeled one. This approach drastically reduces the amount of labeled data required, a big problem in applying deep learning in the real world. Surprisingly, this approach actually leads to increase in robustness as well as raw performance, when compared to fully supervised counterparts, even with the same architecture.

In case, the user wants to skip the pre-training part, the pre-trained weights can be downloaded from here to use for fine-tuning tasks and directly skip to the second part of the tutorial which is using the 'ssl_finetune_train.py'.

Steps to run the tutorial

1.) Download the two datasets TCIA-Covid19 & BTCV (More detail about them in the Data section)
2.) Modify the paths for data_root, json_path & logdir in ssl_script_train.py
3.) Run the 'ssl_script_train.py'
4.) Modify the paths for data_root, json_path, pre-trained_weights_path from 2.) and logdir_path in 'ssl_finetuning_train.py'
5.) Run the 'ssl_finetuning_script.py'
6.) And that's all folks, use the model to your needs

1.Data

Pre-training Dataset: The TCIA Covid-19 dataset was used for generating the pre-trained weights. The dataset contains a total of 771 3D CT Volumes. The volumes were split into training and validation sets of 600 and 171 3D volumes correspondingly. The data is available for download at this link. If this dataset is being used in your work, please use [1] as reference. A json file is provided which contains the training and validation splits that were used for the training. The json file can be found in the json_files directory of the self-supervised training tutorial.

Fine-tuning Dataset: The dataset from Beyond the Cranial Vault Challenge (BTCV) 2015 hosted at MICCAI, was used as a fully supervised fine-tuning task on the pre-trained weights. The dataset consists of 30 3D Volumes with annotated labels of up to 13 different organs [2]. There are 3 json files provided in the json_files directory for the dataset. They correspond to having different number of training volumes ranging from 6, 12 and 24. All 3 json files have the same validation split.

References:

1.) Harmon, Stephanie A., et al. "Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets." Nature communications 11.1 (2020): 1-7.

2.) Tang, Yucheng, et al. "High-resolution 3D abdominal segmentation with random patch network fusion." Medical Image Analysis 69 (2021): 101894.

2. Network Architectures

For pre-training a modified version of ViT [1] has been used, it can be referred here from MONAI. The original ViT was modified by attachment of two 3D Convolutional Transpose Layers to achieve a similar reconstruction size as that of the input image. The ViT is the backbone for the UNETR [2] network architecture which was used for the fine-tuning fully supervised tasks.

The pre-trained backbone of ViT weights were loaded to UNETR and the decoder head still relies on random initialization for adaptability of the new downstream task. This flexibility also allows the user to adapt the ViT backbone to their own custom created network architectures as well.

References:

1.) Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929 (2020).

2.) Hatamizadeh, Ali, et al. "Unetr: Transformers for 3d medical image segmentation." arXiv preprint arXiv:2103.10504 (2021).

3. Self-supervised Tasks

The pre-training pipeline has two aspects to it (Refer figure shown below). First, it uses augmentation (top row) to mutate the data and second, it utilizes regularized contrastive loss [3] to learn feature representations of the unlabeled data. The multiple augmentations are applied on a randomly selected 3D foreground patch from a 3D volume. Two augmented views of the same 3D patch are generated for the contrastive loss as it functions by drawing the two augmented views closer to each other if the views are generated from the same patch, if not then it tries to maximize the disagreement. The CL offers this functionality on a mini-batch.

image

The augmentations mutate the 3D patch in various ways, the primary task of the network is to reconstruct the original image. The different augmentations used are classical techniques such as in-painting [1], out-painting [1] and noise augmentation to the image by local pixel shuffling [2]. The secondary task of the network is to simultaneously reconstruct the two augmented views as similar to each other as possible via regularized contrastive loss [3] as its objective is to maximize the agreement. The term regularized has been used here because contrastive loss is adjusted by the reconstruction loss as a dynamic weight itself.

The below example image depicts the usage of the augmentation pipeline where two augmented views are drawn of the same 3D patch:

image

Multiple axial slices of a 96x96x96 patch are shown before the augmentation (Ref Original Patch in the above figure). Augmented View 1 & 2 are different augmentations generated via the transforms on the same cubic patch. The objective of the SSL network is to reconstruct the original top row image from the first view. The contrastive loss is driven by maximizing agreement of the reconstruction based on input of the two augmented views. matshow3d from monai.visualize was used for creating this figure, a tutorial for using can be found here

References:

1.) Pathak, Deepak, et al. "Context encoders: Feature learning by inpainting." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

2.) Chen, Liang, et al. "Self-supervised learning for medical image analysis using image context restoration." Medical image analysis 58 (2019): 101539.

3.) Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.

4. Experiment Hyper-parameters

Training Hyper-Parameters for SSL:
Epochs: 300
Validation Frequency: 2
Learning Rate: 1e-4
Batch size: 4 3D Volumes (Total of 8 as 2 samples were drawn per 3D Volume)
Loss Function: L1 Contrastive Loss Temperature: 0.005

Training Hyper-parameters for Fine-tuning BTCV task (All settings have been kept consistent with prior UNETR 3D Segmentation tutorial):
Number of Steps: 30000
Validation Frequency: 100 steps
Batch Size: 1 3D Volume (4 samples are drawn per 3D volume)
Learning Rate: 1e-4
Loss Function: DiceCELoss

4. Training & Validation Curves for pre-training SSL

image

L1 error reported for training and validation when performing the SSL training. Please note contrastive loss is not L1.

5. Results of the Fine-tuning vs Random Initialization on BTCV

Training Volumes Validation Volumes Random Init Dice score Pre-trained Dice Score Relative Performance Improvement
6 6 63.07 70.09 ~11.13%
12 6 76.06 79.55 ~4.58%
24 6 78.91 82.30 ~4.29%

Citation

@article{Arijit Das,
  title={Self-supervised learning for medical data},
  author={Arijit Das},
  journal={https://github.com/das-projects/selfsupervised-learning},
  year={2020}
}
Owner
Arijit Das
Data Scientist who is passionate about developing and implementing robust and explainable Machine Learning algorithms.
Arijit Das
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd

Rydin 28 Dec 10, 2022
Deep Learning with PyTorch made easy 🚀 !

Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

198 Dec 29, 2022
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
Complete system for facial identity system

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

4 May 02, 2022
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
Temporal Segment Networks (TSN) in PyTorch

TSN-Pytorch We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as oth

1k Jan 03, 2023
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022