Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Related tags

Deep LearningBAAF-Net
Overview

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

PWC
PWC
PWC
PWC

This repository is for BAAF-Net introduced in the following paper:

"Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion"
Shi Qiu, Saeed Anwar, Nick Barnes
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021)

Paper and Citation

The paper can be downloaded from here (CVF) or here (arXiv).
If you find our paper/codes/results are useful, please cite:

@inproceedings{qiu2021semantic,
  title={Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion},
  author={Qiu, Shi and Anwar, Saeed and Barnes, Nick},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages={1757-1767},
  year={2021}
}

Updates

  • 04/05/2021 Results for S3DIS dataset (mIoU: 72.2%, OA: 88.9%, mAcc: 83.1%) are available now.
  • 04/05/2021 Test results (sequence 11-21: mIoU: 59.9%, OA: 89.8%) for SemanticKITTI dataset are available now.
  • 04/05/2021 Validation results (sequence 08: mIoU: 58.7%, OA: 91.3%) for SemanticKITTI are available now.
  • 28/05/2021 Pretrained models can be downloaded on all 6 areas of S3DIS dataset are available at google drive.
  • 28/05/2021 codes released!

Settings

  • The project is tested on Python 3.6, Tensorflow 1.13.1 and cuda 10.0
  • Then install the dependencies: pip install -r helper_requirements.txt
  • And compile the cuda-based operators: sh compile_op.sh
    (Note: may change the cuda root directory CUDA_ROOT in ./util/sampling/compile_ops.sh)

Dataset

  • Download S3DIS dataset from here.
  • Unzip and move the folder Stanford3dDataset_v1.2_Aligned_Version to ./data.
  • Run: python utils/data_prepare_s3dis.py
    (Note: may specify other directory as dataset_path in ./util/data_prepare_s3dis.py)

Training/Test

  • Training:
python -B main_S3DIS.py --gpu 0 --mode train --test_area 5

(Note: specify the --test_area from 1~6)

  • Test:
python -B main_S3DIS.py --gpu 0 --mode test --test_area 5 --model_path 'pretrained/Area5/snap-32251'

(Note: specify the --test_area index and the trained model path --model_path)

6-fold Cross Validation

  • Conduct training and test on each area.
  • Extract all test results, Area_1_conferenceRoom_1.ply ... Area_6_pantry_1.ply (272 .ply files in total), to the folder ./data/results
  • Run: python utils/6_fold_cv.py
    (Note: may change the target folder original_data_dir and the test results base_dir in ./util/6_fold_cv.py)

Pretrained Models and Results on S3DIS Dataset

  • BAAF-Net pretrained models on all 6 areas can be downloaded from google drive.
  • Download our results (ply files) via google drive for visualizations/comparisons.
  • More Functions about loading/writing/etc. ply files can be found from here.

Results on SemanticKITTI Dataset

  • Online test results (sequence 11-21): mIoU: 59.9%, OA: 89.8%
  • Download our test results (sequence 11-21 label files) via google drive for visualizations/comparisons.

  • Validation results (sequence 08): mIoU: 58.7%, OA: 91.3%
  • Download our validation results (sequence 08 label files) via google drive for visualizations/comparisons.
  • Visualization tools can be found from semantic-kitti-api.

Acknowledgment

The code is built on RandLA-Net. We thank the authors for sharing the codes.

Owner
PhD student of ANU affiliated with Data61-CSIRO
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the

Yi(Amy) Sui 2 Dec 01, 2021
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
Continual Learning of Electronic Health Records (EHR).

Continual Learning of Longitudinal Health Records Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Re

Jacob 7 Oct 21, 2022
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
The code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning"

The Code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning" Setting up and using the repo Get the dataset. Follow

4 Apr 20, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
a morph transfer UGATIT for image translation.

Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise

55 Nov 14, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022