Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Overview

Contributors Forks Stargazers Issues GNU License LinkedIn

Fully Adaptive Bayesian Algorithm for Data Analysis

FABADA

FABADA is a novel non-parametric noise reduction technique which arise from the point of view of Bayesian inference that iteratively evaluates possible smoothed models of the data, obtaining an estimation of the underlying signal that is statistically compatible with the noisy measurements. Iterations stop based on the evidence $E$ and the $\chi^2$ statistic of the last smooth model, and we compute the expected value of the signal as a weighted average of the smooth models. You can find the entire paper describing the new method in (link will be available soon).
Explore the docs »

View Demo · Report Bug · Request Feature

Table of Contents
  1. About The Method
  2. Getting Started
  3. Usage
  4. Results
  5. Contributing
  6. License
  7. Contact
  8. Cite

About The Method

This automatic method is focused in astronomical data, such as images (2D) or spectra (1D). Although, this doesn't mean it can be treat like a general noise reduction algorithm and can be use in any kind of two and one-dimensional data reproducing reliable results. The only requisite of the input data is an estimation of its variance.

(back to top)

Getting Started

We try to make the usage of FABADA as simple as possible. For that purpose, we have create a PyPI and Conda package to install FABADA in its latest version.

Prerequisites

The first requirement is to have a version of Python greater than 3.5. Although PyPI install the prerequisites itself, FABADA has two dependecies.

Installation

To install fabada we can, use the Python Package Index (PyPI) or Conda.

Using pip

  pip install fabada

we are currently working on uploading the package to the Conda system.

(back to top)

Usage

Along with the package two examples are given.

  • fabada_demo_image.py

In here we show how to use fabada for an astronomical grey image (two dimensional) First of all we have to import our library previously install and some dependecies

    from fabada import fabada
    import numpy as np
    from PIL import Image

Then we read the bubble image borrowed from the Hubble Space Telescope gallery. In our case we use the Pillow library for that. We also add some random Gaussian white noise using numpy.random.

    # IMPORTING IMAGE
    y = np.array(Image.open("bubble.png").convert('L'))

    # ADDING RANDOM GAUSSIAN NOISE
    np.random.seed(12431)
    sig      = 15             # Standard deviation of noise
    noise    = np.random.normal(0, sig ,y.shape)
    z        = y + noise
    variance = sig**2

Once the noisy image is generated we can apply fabada to produce an estimation of the underlying image, which we only have to call fabada and give it the variance of the noisy image

    y_recover = fabada(z,variance)

And its done 😉

As easy as one line of code.

The results obtained running this example would be:

Image Results

The left, middle and right panel corresponds to the true signal, the noisy meassurents and the estimation of fabada respectively. There is also shown the Peak Signal to Noise Ratio (PSNR) in dB and the Structural Similarity Index Measure (SSIM) at the bottom of the middle and right panel (PSNR/SSIM).

  • fabada_demo_spectra.py

In here we show how to use fabada for an astronomical spectrum (one dimensional), basically is the same as the example above since fabada is the same for one and two-dimensional data. First of all, we have to import our library previously install and some dependecies

    from fabada import fabada
    import pandas as pd
    import numpy as np

Then we read the interacting galaxy pair Arp 256 spectra, taken from the ASTROLIB PYSYNPHOT package which is store in arp256.csv. Again we add some random Gaussian white noise

    # IMPORTING SPECTRUM
    y = np.array(pd.read_csv('arp256.csv').flux)
    y = (y/y.max())*255  # Normalize to 255

    # ADDING RANDOM GAUSSIAN NOISE
    np.random.seed(12431)
    sig      = 10             # Standard deviation of noise
    noise    = np.random.normal(0, sig ,y.shape)
    z        = y + noise
    variance = sig**2

Once the noisy image is generated we can, again, apply fabada to produce an estimation of the underlying spectrum, which we only have to call fabada and give it the variance of the noisy image

    y_recover = fabada(z,variance)

And done again 😉

Which is exactly the same as for two dimensional data.

The results obtained running this example would be:

Spectra Results

The red, grey and black line represents the true signal, the noisy meassurents and the estimation of fabada respectively. There is also shown the Peak Signal to Noise Ratio (PSNR) in dB and the Structural Similarity Index Measure (SSIM) in the legend of the figure (PSNR/SSIM).

(back to top)

Results

All the results of the paper of this algorithm can be found in the folder results along with a jupyter notebook that allows to explore all of them through an interactive interface. You can run the jupyter notebook through Google Colab in this link --> Explore the results.

(back to top)

Contributing

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

(back to top)

License

Distributed under the GNU General Public License. See LICENSE.txt for more information.

(back to top)

Contact

Pablo M Sánchez Alarcón - [email protected]

Yago Ascasibar Sequeiros - [email protected]

Project Link: https://github.com/PabloMSanAla/fabada

(back to top)

Cite

Thank you for using FABADA.

Citations and acknowledgement are vital for the continued work on this kind of algorithms.

Please cite the following record if you used FABADA in any of your publications.

@ARTICLE{2022arXiv220105145S,
author = {{Sanchez-Alarcon}, Pablo M and {Ascasibar Sequeiros}, Yago},
title = "{Fully Adaptive Bayesian Algorithm for Data Analysis, FABADA}",
journal = {arXiv e-prints},
keywords = {Astrophysics - Instrumentation and Methods for Astrophysics, Astrophysics - Astrophysics of Galaxies, Astrophysics - Solar and Stellar Astrophysics, Computer Science - Computer Vision and Pattern Recognition, Physics - Data Analysis, Statistics and Probability},
year = 2022,
month = jan,
eid = {arXiv:2201.05145},
pages = {arXiv:2201.05145},
archivePrefix = {arXiv},
eprint = {2201.05145},
primaryClass = {astro-ph.IM},
adsurl = {https://ui.adsabs.harvard.edu/abs/2022arXiv220105145S}
}

Sanchez-Alarcon, P. M. and Ascasibar Sequeiros, Y., “Fully Adaptive Bayesian Algorithm for Data Analysis, FABADA”, arXiv e-prints, 2022.

https://arxiv.org/abs/2201.05145

(back to top)

Readme file taken from Best README Template.

You might also like...
pyhsmm - library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and explicit-duration Hidden semi-Markov Models (HSMMs), focusing on the Bayesian Nonparametric extensions, the HDP-HMM and HDP-HSMM, mostly with weak-limit approximations.
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.

Hierarchical-Bayesian-Defense - Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical Variational Inference (Openreview) How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build
PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build

simple, elegant and safe Introduction PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to ha

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

We evaluate our method on different datasets (including ShapeNet, CUB-200-2011, and Pascal3D+) and achieve state-of-the-art results, outperforming all the other supervised and unsupervised methods and 3D representations, all in terms of performance, accuracy, and training time.
Comments
  • chi2pdf

    chi2pdf

    https://github.com/PabloMSanAla/fabada/blob/44a0ae025d21a11235f6591f8fcacbf7c0cec1ec/fabada/init.py#L129

    The chi2pdf estimation is dependent on df. df, in the example demos, is set to data.size.

    In the case of fabada_demo_spectrum, data.size is 1430 samples.

    per wolfram alpha, the gamma function value of 715 is 1x10^1729, which is well out of the calculation range of any desktop computer.

    chi2_data = np.sum <-- a float chi2_pdf = stats.chi2.pdf(chi2_data, df=data.size)

    https://lost-contact.mit.edu/afs/inf.ed.ac.uk/group/teaching/matlab-help/R2014a/stats/chi2pdf.html

    chi2_pdf = (chi2data** (N - 2) / 2) * numpy.exp(-chi2sum / 2)
    / ((2 ** (N / 2)) * math.gamma(N / 2))

    As a result, this function is going to fail without any question, and numpy /python will happily ignore the NaN value which is always returned. this then turns chi2_pdf_derivative chi2_pdf_previous chi2_pdf_snd_derivative chi2_pdf_derivative_previous into NaN values as well.

    opened by falseywinchnet 0
  • data variance fixing unreachable

    data variance fixing unreachable

    https://github.com/PabloMSanAla/fabada/blob/master/fabada/init.py#L83 this line of code is unreachable: since all the nan's are already set to 0 previously

    opened by falseywinchnet 0
  • python equivalance

    python equivalance

    https://github.com/PabloMSanAla/fabada/blob/44a0ae025d21a11235f6591f8fcacbf7c0cec1ec/fabada/init.py#L115 This sets a reference, and afterwards, any update to the array being referenced also modifies the array referencing it.

    opened by falseywinchnet 2
Releases(v0.2)
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"

REMIND Your Neural Network to Prevent Catastrophic Forgetting This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An ar

Tyler Hayes 72 Nov 27, 2022
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on ease-of-use, documentation, and smooth video creation.

VQGAN-CLIP-GENERATOR Overview This is a package (with available notebook) for running VQGAN+CLIP locally, with a focus on ease of use, good documentat

Ryan Hamilton 98 Dec 30, 2022
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021