Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE)

Related tags

Deep LearningOG-SPACE
Overview

OG-SPACE

Introduction

Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE) is a computational framework to simulate the spatial evolution of cancer cells and the experimental procedure of bulk and Single-cell DNA-seq experiments. OG-SPACE relies on an optimized Gillespie algorithm for a large number of cells able to handle a variety of Birth-Death processes on a lattice and an efficient procedure to reconstruct the phylogenetic tree and the genotype of the sampled cells.

REQUIRED SOFTWARE AND PACKAGE

  • R (tested on version 4.0) https://cran.r-project.org
  • The following R libraries:
    • igraph
    • gtools
    • ggplot2
    • gridExtra
    • reshape2
    • stringi
    • stringr
    • shiny
    • manipulateWidget
    • rgl

RUN OG-SPACE

  • Download the folder OG-SPACE.
  • use the following command "Rscript.exe my_path\Run_OG-SPACE.R". "my_path" is the path to the folder containing the OG-SPACE scripts.
  • When the pop-up window appears, select the file "Run_OG-SPACE.R" in the working folder. Alternatively, you can launch OG-SPACE, with software like RStudio. In this case, simply run the script "Run_OG-SPACE.R" and when the pop-up window appears, select the file "Run_OG-SPACE.R" in the working folder.

PARAMETERS OF OG-SPACE

Most of the parameters of OG-SPACE could be modified by editing with a text editor the file "input/Parameters.txt". Here a brief description of each parameters.

  • simulate_process three values "contact","voter" and "h_voter". This parameter selects which model simulate with OG-SPACE.
  • generate_lattice = if 1 OG-SPACE generate a regular lattice for the dynamics. If 0 OG-SPACE takes an Igraph object named "g.Rdata" in the folder "input".
  • dimension = an integer number, the dimensionality of the generated regular lattice.
  • N_e = an integer number, number of elements of the edge of the generated regular lattice.
  • dist_interaction = an integer number, the distance of interaction between nodes of the lattice.
  • simulate_experiments = if 1 OG-SPACE generates bulk and sc-DNA seq experiments data. If 0, no.
  • do_bulk_exp = if 1 OG-SPACE generates bulk seq experiment data . If 0, no
  • do_sc_exp = if 1 OG-SPACE generates sc-DNA seq experiments data . If 0, no
  • to_do_plots_of_trees = if 1 OG-SPACE generates the plots of the trees . If 0, no.
  • do_pop_dyn_plot = if 1 OG-SPACE generates the plots of the dynamics . If 0, no.
  • do_spatial_dyn_plot = if 1 OG-SPACE generates the plots of the spatial dynamics . If 0, no.
  • do_geneaology_tree = if 1 OG-SPACE generates the plots of the cell genealogy trees . If 0, no.
  • do_phylo_tree = if 1 OG-SPACE generate the plots of the phylogenetic trees . If 0 no.
  • size_of_points_lattice = an integer number, size of the points in the plot of spatial dynamics.
  • size_of_points_trees = an integer number, size of the points in the plot of trees.
  • set_seed = the random seed of the computation.
  • Tmax = maximum time of the computation [arb. units] .
  • alpha = birth rate of the first subpopulation [1/time].
  • beta = death rate of the first subpopulation [1/time].
  • driv_mut = probability of developing a driver mutation (between 0 and 1).
  • driv_average_advantadge = average birth rate advantage per driver [1/time].
  • random_start = if 1 OG-SPACE select randomly the spatial position of the first cell . If 0 it use the variable "node_to_start" .
  • node_to_start = if random_start=0 OG-SPACE, the variable should be setted to the label of the node of starting.
  • N_starting = Number of starting cells. Works only with random_start=1.
  • n_events_saving = integer number, frequency of the number of events when saving the dynamics for the plot.
  • do_random_sampling = if 2 OG-SPACE samples randomly the cells.
  • -n_sample = integer number of the number of sampled cell. Ignored if do_random_sampling = 0
  • dist_sampling = The radius of the spatial sampled region. Ignored if do_random_sampling = 1
  • genomic_seq_length = number of bases of the genome under study.
  • neutral_mut_rate = neutral mutational rate per base [1/time].
  • n_time_sample = integer number, number of the plots of the dynamics.
  • detected_vaf_thr = VAF threshold. If a VAF is lesser than this number is considered not observed.
  • sequencing_depth_bulk = integer number, the sequencing depth of bulk sequencing.
  • prob_reads_bulk = number between 0 and 1, 1- the prob of a false negative in bulk read
  • mean_coverage_cell_sc = integer number, mean number of read per cells
  • fn_rate_sc_exp = number between 0 and 1, 1- the prob of a false negative in sc read
  • fp_rate_sc_exp = number between 0 and 1, 1- the prob of a false positive in sc read
  • minimum_reads_for_cell = integer number, the minimum number of reads per cell in order to call a mutation
  • detection_thr_sc = ratio of successful reads necessary to call a mutation

OUTPUTS OF OG-SPACE

In the folder "output", you will find all the .txt data files of the output. Note that the trees are returned as edge list matrices. The files will contain:

  • The state of the lattice, with the position of each cell.
  • The Ground Truth (GT) genotype of the sampled cells.
  • The GT Variant Allele Frequency (VAF) spectrum of the sampled cells.
  • The GT genealogy tree of the sampled cells.
  • The GT phylogenetic tree of the sampled cells.
  • The mutational tree of the driver mutations appeared during the simulation of the dynamics.
  • The genotype of the sampled cells after simulating a sc-DNA-seq experiment (if required).
  • The VAF spectrum of the sampled cells after simulating a bulk DNA-seq experiment (if required).

In the folder "output/plots", you will find all required plots.

Owner
Data and Computational Biology Group UNIMIB (was BI*oinformatics MI*lan B*icocca)
The github organization of the DCB group of the DISCo, Università degli Studi di Milano Bicocca
Data and Computational Biology Group UNIMIB (was BI*oinformatics MI*lan B*icocca)
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consist

THUML @ Tsinghua University 2.2k Jan 03, 2023
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
Data and analysis code for an MS on SK VOC genomes phenotyping/neutralisation assays

Description Summary of phylogenomic methods and analyses used in "Immunogenicity of convalescent and vaccinated sera against clinical isolates of ance

Finlay Maguire 1 Jan 06, 2022
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids Real-time detection performance. This repo contains the code an

0 Nov 10, 2021
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

André Pedersen 26 Nov 23, 2022
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

Phil Wang 208 Dec 25, 2022
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Xuhua Huang 5 Aug 02, 2022
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
⚖️🔁🔮🕵️‍♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances This repository contains the code for Measuring the Co

Daniel Steinberg 0 Nov 06, 2022