Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

Overview

License CC BY-NC-SA 4.0

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement

Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

fig

HiSD is the SOTA image-to-image translation method for both Scalability for multiple labels and Controllable Diversity with impressive disentanglement.

The styles to manipolate each tag in our method can be not only generated by random noise but also extracted from images!

Also, the styles can be smoothly interpolated like:

reference

All tranlsations are producted be a unified HiSD model and trained end-to-end.

Easy Use (for Both Jupyter Notebook and Python Script)

Download the pretrained checkpoint in Baidu Drive (Password:ihxf) or Google Drive. Then put it into the root of this repo.

Open "easy_use.ipynb" and you can manipolate the facial attributes by yourself!

If you haven't installed Jupyter, use "easy_use.py".

The script will translate "examples/input_0.jpg" to be with bangs generated by a random noise and glasses extracted from "examples/reference_glasses_0.jpg"

Quick Start

Clone this repo:

git clone https://github.com/imlixinyang/HiSD.git
cd HiSD/

Install the dependencies: (Anaconda is recommended.)

conda create -n HiSD python=3.6.6
conda activate HiSD
conda install -y pytorch=1.0.1 torchvision=0.2.2  cudatoolkit=10.1 -c pytorch
pip install pillow tqdm tensorboardx pyyaml

Download the dataset.

We recommend you to download CelebA-HQ from CelebAMask-HQ. Anyway you shound get the dataset folder like:

celeba_or_celebahq
 - img_dir
   - img0
   - img1
   - ...
 - train_label.txt

Preprocess the dataset.

In our paper, we use fisrt 3000 as test set and remaining 27000 for training. Carefully check the fisrt few (always two) lines in the label file which is not like the others.

python proprecessors/celeba-hq.py --img_path $your_image_path --label_path $your_label_path --target_path datasets --start 3002 --end 30002

Then you will get several ".txt" files in the "datasets/", each of them consists of lines of the absolute path of image and its tag-irrelevant conditions (Age and Gender by default).

Almost all custom datasets can be converted into special cases of HiSD. We provide a script for custom datasets. You need to organize the folder like:

your_training_set
 - Tag0
   - attribute0
     - img0
     - img1
     - ...
   - attribute1
     - ...
 - Tag1
 - ...

For example, the AFHQ (one tag and three attributes, remember to split the training and test set first):

AFHQ_training
  - Category
    - cat
      - img0
      - img1
      - ...
    - dog
      - ...
    - wild
      - ...

You can Run

python proprecessors/custom.py --imgs $your_training_set --target_path datasets/custom.txt

For other datasets, please code the preprocessor by yourself.

Here, we provide some links for you to download other available datasets:

Dataset in Bold means we have tested the generalization of HiSD for this dataset.

Train.

Following "configs/celeba-hq.yaml" to make the config file fit your machine and dataset.

For a single 1080Ti and CelebA-HQ, you can directly run:

python core/train.py --config configs/celeba-hq.yaml --gpus 0

The samples and checkpoints are in the "outputs/" dir. For Celeba-hq dataset, the samples during first 200k iterations will be like: (tag 'Glasses' to attribute 'with')

training

Test.

Modify the 'steps' dict in the first few lines in 'core/test.py' and run:

python core/test.py --config configs/celeba-hq.yaml --checkpoint $your_checkpoint --input_path $your_input_path --output_path results

$your_input_path can be either a image file or a folder of images. Default 'steps' make every image to be with bangs and glasses using random latent-guided styles.

Evaluation metrics.

We use FID for quantitative comparison. For more details, please refer to the paper.

License

Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International)

The code is released for academic research use only. For other use, please contact me at [email protected].

Citation

If our paper helps your research, please cite it in your publications:

@misc{li2021imagetoimage,
      title={Image-to-image Translation via Hierarchical Style Disentanglement}, 
      author={Xinyang Li and Shengchuan Zhang and Jie Hu and Liujuan Cao and Xiaopeng Hong and Xudong Mao and Feiyue Huang and Yongjian Wu and Rongrong Ji},
      year={2021},
      eprint={2103.01456},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

I try my best to make the code easy to understand or further modified because I feel very lucky to start with the clear and readily comprehensible code of MUNIT when I'm a beginner.

If you have any problem, please feel free to contact me at [email protected] or raise an issue.

Related Work

Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em

Max Woolf 81 Jan 04, 2023
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
MRI reconstruction (e.g., QSM) using deep learning methods

deepMRI: Deep learning methods for MRI Authors: Yang Gao, Hongfu Sun This repo is devloped based on Pytorch (1.8 or later) and matlab (R2019a or later

Hongfu Sun 17 Dec 18, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

166 Jan 01, 2023
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]

Learning to Classify Images without Labels This repo contains the Pytorch implementation of our paper: SCAN: Learning to Classify Images without Label

Wouter Van Gansbeke 1.1k Dec 30, 2022
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Ro

Meta Research 1.2k Jan 02, 2023
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022