Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Overview

Variance-Aware-MT-Test-Sets

Variance-Aware Machine Translation Test Sets

License

See LICENSE. We follow the data licensing plan as the same as the WMT benchmark.

VAT Data

We release 70 lightweight and discriminative test sets for machine translation evaluation, covering 35 translation directions from WMT16 to WMT20 competitions. See VAT_data folder for detailed information.

For each translation direction of a specific year, both source and reference are provided for different types of evaluation metrics. For example,

VAT_data/
├── wmt20
    ├── ...
    ├── vat_newstest2020-zhen-ref.en.txt
    └── vat_newstest2020-zhen-src.zh.txt

Meta-Information of VAT

We also provide the meta-inforamtion of reserved data. Each json file contains the IDs of retained data in the original test set. For instance, file wmt20/bert-r_filter-std60.json describes:

{
	...
	"en-de": [4, 6, 10, 13, 14, 15, ...],
	"de-en": [0, 3, 4, 5, 7, 9, ...],
	...
}

Reproduce & Create VAT

The reported results in the paper were produced by single NVIDIA GeForce 1080Ti card.

We will keep updating the code and related documentation after the response.

Requirements

  • sacreBLEU version >= 1.4.14
  • BLEURT version >= 0.0.2
  • COMET version >= 0.1.0
  • BERTScore version >= 0.3.7 (hug_trans==4.2.1)
  • PyTorch version >= 1.5.1
  • Python version >= 3.8
  • CUDA & cudatoolkit >= 10.1

Note: the minimal version is for reproducing the results

Pipeline

  1. Use score_xxx.py to generate the CSV files that stores the sentence-level scores evaluated by the corresponding metrics. For example, evaluating all the WMT20 submissions of all the language pairs using BERTScore:
    CUDA_VISIBLE_DEVICES=0 python score_bert.py -b 128 -s -r dummy -c dummy --rescale_with_baseline \
    	--hypos-dir ${WMT_DATA_PATH}/system-outputs \
    	--refs-dir ${WMT_DATA_PATH}/references \
    	--scores-dir ${WMT_DATA_PATH}/results/system-level/scores_ALL \
    	--testset-name newstest2020 --score-dump wmt20-bertscore.csv
    (Alternative Option) You can use your implementation for dumping the scores given by the metrics. But the CSV header should contain:
    ,TESTSET,LP,ID,METRIC,SYS,SCORE
    
  2. Use cal_filtering.py to filter the test set based on the score warehouse calculated in the last step. For example,
    python cal_filtering.py --score-dump wmt20-bertscore.csv --output VAT_meta/wmt20-test/ --filter-per 60
    It will produce the json files which contain the IDs of reserved sentences.

Statistics of VAT (References)

Benchmark Translation Direction # Sentences # Words # Vocabulary
wmt20 km-en 928 17170 3645
wmt20 cs-en 266 12568 3502
wmt20 en-de 567 21336 5945
wmt20 ja-en 397 10526 3063
wmt20 ps-en 1088 20296 4303
wmt20 en-zh 567 18224 5019
wmt20 en-ta 400 7809 4028
wmt20 de-en 314 16083 4046
wmt20 zh-en 800 35132 6457
wmt20 en-ja 400 12718 2969
wmt20 en-cs 567 16579 6391
wmt20 en-pl 400 8423 3834
wmt20 en-ru 801 17446 6877
wmt20 pl-en 400 7394 2399
wmt20 iu-en 1188 23494 3876
wmt20 ru-en 396 6966 2330
wmt20 ta-en 399 7427 2148
wmt19 zh-en 800 36739 6168
wmt19 en-cs 799 15433 6111
wmt19 de-en 800 15219 4222
wmt19 en-gu 399 8494 3548
wmt19 fr-de 680 12616 3698
wmt19 en-zh 799 20230 5547
wmt19 fi-en 798 13759 3555
wmt19 en-fi 799 13303 6149
wmt19 kk-en 400 9283 2584
wmt19 de-cs 799 15080 6166
wmt19 lt-en 400 10474 2874
wmt19 en-lt 399 7251 3364
wmt19 ru-en 800 14693 3817
wmt19 en-kk 399 6411 3252
wmt19 en-ru 799 16393 6125
wmt19 gu-en 406 8061 2434
wmt19 de-fr 680 16181 3517
wmt19 en-de 799 18946 5340
wmt18 en-cs 1193 19552 7926
wmt18 cs-en 1193 23439 5453
wmt18 en-fi 1200 16239 7696
wmt18 en-tr 1200 19621 8613
wmt18 en-et 800 13034 6001
wmt18 ru-en 1200 26747 6045
wmt18 et-en 800 20045 5045
wmt18 tr-en 1200 25689 5955
wmt18 fi-en 1200 24912 5834
wmt18 zh-en 1592 42983 7985
wmt18 en-zh 1592 34796 8579
wmt18 en-ru 1200 22830 8679
wmt18 de-en 1199 28275 6487
wmt18 en-de 1199 25473 7130
wmt17 en-lv 800 14453 6161
wmt17 zh-en 800 20590 5149
wmt17 en-tr 1203 17612 7714
wmt17 lv-en 800 18653 4747
wmt17 en-de 1202 22055 6463
wmt17 ru-en 1200 24807 5790
wmt17 en-fi 1201 17284 7763
wmt17 tr-en 1203 23037 5387
wmt17 en-zh 800 18001 5629
wmt17 en-ru 1200 22251 8761
wmt17 fi-en 1201 23791 5300
wmt17 en-cs 1202 21278 8256
wmt17 de-en 1202 23838 5487
wmt17 cs-en 1202 22707 5310
wmt16 tr-en 1200 19225 4823
wmt16 ru-en 1199 23010 5442
wmt16 ro-en 800 16200 3968
wmt16 de-en 1200 22612 5511
wmt16 en-ru 1199 20233 7872
wmt16 fi-en 1200 20744 5176
wmt16 cs-en 1200 23235 5324
Owner
NLP2CT Lab, University of Macau
Natural Language Processing & Portuguese - Chinese Machine Translation Laboratory
NLP2CT Lab, University of Macau
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding his way.

GuidEye A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding h

Munal Jain 0 Aug 09, 2022
[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Transform and Tell: Entity-Aware News Image Captioning This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and

Alasdair Tran 85 Dec 13, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
Towards Multi-Camera 3D Human Pose Estimation in Wild Environment

PanopticStudio Toolbox This repository has a toolbox to download, process, and visualize the Panoptic Studio (Panoptic) data. Note: Sep-21-2020: Curre

335 Jan 09, 2023
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022