Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Overview

Variance-Aware-MT-Test-Sets

Variance-Aware Machine Translation Test Sets

License

See LICENSE. We follow the data licensing plan as the same as the WMT benchmark.

VAT Data

We release 70 lightweight and discriminative test sets for machine translation evaluation, covering 35 translation directions from WMT16 to WMT20 competitions. See VAT_data folder for detailed information.

For each translation direction of a specific year, both source and reference are provided for different types of evaluation metrics. For example,

VAT_data/
├── wmt20
    ├── ...
    ├── vat_newstest2020-zhen-ref.en.txt
    └── vat_newstest2020-zhen-src.zh.txt

Meta-Information of VAT

We also provide the meta-inforamtion of reserved data. Each json file contains the IDs of retained data in the original test set. For instance, file wmt20/bert-r_filter-std60.json describes:

{
	...
	"en-de": [4, 6, 10, 13, 14, 15, ...],
	"de-en": [0, 3, 4, 5, 7, 9, ...],
	...
}

Reproduce & Create VAT

The reported results in the paper were produced by single NVIDIA GeForce 1080Ti card.

We will keep updating the code and related documentation after the response.

Requirements

  • sacreBLEU version >= 1.4.14
  • BLEURT version >= 0.0.2
  • COMET version >= 0.1.0
  • BERTScore version >= 0.3.7 (hug_trans==4.2.1)
  • PyTorch version >= 1.5.1
  • Python version >= 3.8
  • CUDA & cudatoolkit >= 10.1

Note: the minimal version is for reproducing the results

Pipeline

  1. Use score_xxx.py to generate the CSV files that stores the sentence-level scores evaluated by the corresponding metrics. For example, evaluating all the WMT20 submissions of all the language pairs using BERTScore:
    CUDA_VISIBLE_DEVICES=0 python score_bert.py -b 128 -s -r dummy -c dummy --rescale_with_baseline \
    	--hypos-dir ${WMT_DATA_PATH}/system-outputs \
    	--refs-dir ${WMT_DATA_PATH}/references \
    	--scores-dir ${WMT_DATA_PATH}/results/system-level/scores_ALL \
    	--testset-name newstest2020 --score-dump wmt20-bertscore.csv
    (Alternative Option) You can use your implementation for dumping the scores given by the metrics. But the CSV header should contain:
    ,TESTSET,LP,ID,METRIC,SYS,SCORE
    
  2. Use cal_filtering.py to filter the test set based on the score warehouse calculated in the last step. For example,
    python cal_filtering.py --score-dump wmt20-bertscore.csv --output VAT_meta/wmt20-test/ --filter-per 60
    It will produce the json files which contain the IDs of reserved sentences.

Statistics of VAT (References)

Benchmark Translation Direction # Sentences # Words # Vocabulary
wmt20 km-en 928 17170 3645
wmt20 cs-en 266 12568 3502
wmt20 en-de 567 21336 5945
wmt20 ja-en 397 10526 3063
wmt20 ps-en 1088 20296 4303
wmt20 en-zh 567 18224 5019
wmt20 en-ta 400 7809 4028
wmt20 de-en 314 16083 4046
wmt20 zh-en 800 35132 6457
wmt20 en-ja 400 12718 2969
wmt20 en-cs 567 16579 6391
wmt20 en-pl 400 8423 3834
wmt20 en-ru 801 17446 6877
wmt20 pl-en 400 7394 2399
wmt20 iu-en 1188 23494 3876
wmt20 ru-en 396 6966 2330
wmt20 ta-en 399 7427 2148
wmt19 zh-en 800 36739 6168
wmt19 en-cs 799 15433 6111
wmt19 de-en 800 15219 4222
wmt19 en-gu 399 8494 3548
wmt19 fr-de 680 12616 3698
wmt19 en-zh 799 20230 5547
wmt19 fi-en 798 13759 3555
wmt19 en-fi 799 13303 6149
wmt19 kk-en 400 9283 2584
wmt19 de-cs 799 15080 6166
wmt19 lt-en 400 10474 2874
wmt19 en-lt 399 7251 3364
wmt19 ru-en 800 14693 3817
wmt19 en-kk 399 6411 3252
wmt19 en-ru 799 16393 6125
wmt19 gu-en 406 8061 2434
wmt19 de-fr 680 16181 3517
wmt19 en-de 799 18946 5340
wmt18 en-cs 1193 19552 7926
wmt18 cs-en 1193 23439 5453
wmt18 en-fi 1200 16239 7696
wmt18 en-tr 1200 19621 8613
wmt18 en-et 800 13034 6001
wmt18 ru-en 1200 26747 6045
wmt18 et-en 800 20045 5045
wmt18 tr-en 1200 25689 5955
wmt18 fi-en 1200 24912 5834
wmt18 zh-en 1592 42983 7985
wmt18 en-zh 1592 34796 8579
wmt18 en-ru 1200 22830 8679
wmt18 de-en 1199 28275 6487
wmt18 en-de 1199 25473 7130
wmt17 en-lv 800 14453 6161
wmt17 zh-en 800 20590 5149
wmt17 en-tr 1203 17612 7714
wmt17 lv-en 800 18653 4747
wmt17 en-de 1202 22055 6463
wmt17 ru-en 1200 24807 5790
wmt17 en-fi 1201 17284 7763
wmt17 tr-en 1203 23037 5387
wmt17 en-zh 800 18001 5629
wmt17 en-ru 1200 22251 8761
wmt17 fi-en 1201 23791 5300
wmt17 en-cs 1202 21278 8256
wmt17 de-en 1202 23838 5487
wmt17 cs-en 1202 22707 5310
wmt16 tr-en 1200 19225 4823
wmt16 ru-en 1199 23010 5442
wmt16 ro-en 800 16200 3968
wmt16 de-en 1200 22612 5511
wmt16 en-ru 1199 20233 7872
wmt16 fi-en 1200 20744 5176
wmt16 cs-en 1200 23235 5324
Owner
NLP2CT Lab, University of Macau
Natural Language Processing & Portuguese - Chinese Machine Translation Laboratory
NLP2CT Lab, University of Macau
paper list in the area of reinforcenment learning for recommendation systems

paper list in the area of reinforcenment learning for recommendation systems

HenryZhao 23 Jun 09, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
Trafffic prediction analysis using hybrid models - Machine Learning

Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th

1 Feb 08, 2022
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 09, 2023
A tool to visualise the results of AlphaFold2 and inspect the quality of structural predictions

AlphaFold Analyser This program produces high quality visualisations of predicted structures produced by AlphaFold. These visualisations allow the use

Oliver Powell 3 Nov 13, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer A novel graph neural network (GNN) based model (termed SlideGraph+

28 Dec 24, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022