Awesome Weak-Shot Learning

Overview

Awesome Weak-Shot Learning Awesome

In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base categories have full annotations while novel categories only have weak annotations. In different tasks, weak annotation could be provided in different forms, e.g., noisy label for classification, image label for object detection, image label/bounding box for segmentation.

The comparison between weak-shot learning and zero/few-shot learning is illustrated below. In all three settings, all categories are split into non-overlapped base categories and novel categories. In all three settings, base categories have abundant fully-annotated training samples. In zero-shot learning, novel categories have no training samples, so class-level representations are required to bridge the gap between base categories and novel categories. In few-shot learning, novel categories have limited training samples. In weak-shot leanring, novel categories have abundant weakly-annotated training samples.

Contributing

Contributions are welcome. If you wish to contribute, feel free to send a pull request. If you have suggestions for new sections to be included, please raise an issue and discuss before sending a pull request.

Table of Contents

Survey

  • Li Niu: "Weak Novel Categories without Tears: A Survey on Weak-Shot Learning." arXiv preprint arXiv:2110.02651 (2021). [arXiv]

Weak-Shot Classification

Base category: clean label; Novel category: noisy label (weak-shot)

  • Junjie Chen, Li Niu, Liu Liu, Liqing Zhang: "Weak-shot Fine-grained Classification via Similarity Transfer." NeurIPS (2021) [arXiv] [code]

Weak-Shot Object Detection

Base category: bounding box; Novel category: image label (chaotic names: mixed-supervised, cross-supervised, partially-supervised, weak-shot)

  • Judy Hoffman, Sergio Guadarrama, Eric Tzeng, Ronghang Hu, Jeff Donahue, Ross Girshick, Trevor Darrell, Kate Saenko: "LSDA: Large Scale Detection Through Adaptation." NIPS (2014) [paper] [code]
  • Joseph Redmon, Ali Farhadi: "YOLO9000: Better, Faster, Stronger." CVPR (2017) [paper] [code]
  • Bharat Singh, Hengduo Li, Abhishek Sharma, Larry S. Davis: "R-FCN-3000 at 30fps: Decoupling detection and classification." CVPR (2018) [paper] [code]
  • Yan Li, Junge Zhang, Kaiqi Huang, Jianguo Zhang: "Mixed Supervised Object Detection with Robust Objectness Transfer." T-PAMI (2018) [paper] [arXiv]
  • Jason Kuen, Federico Perazzi, Zhe Lin, Jianming Zhang, Yap-Peng Tan: "Scaling Object Detection by Transferring Classification Weights." ICCV (2019) [paper] [code]
  • Yuanyi Zhong, Jianfeng Wang, Jian Peng, Lei Zhang: "Boosting Weakly Supervised Object Detection with Progressive Knowledge Transfer." ECCV (2020) [paper] [arXiv] [code]
  • Ye Guo, Yali Li, Shengjin Wang: "Cs-r-fcn: Cross-supervised Learning for Large-scale Object Detection." ICASSP (2020) [arXiv]
  • Zitian Chen, Zhiqiang Shen, Jiahui Yu, Erik Learned-Miller: "Cross-Supervised Object Detection." arXiv preprint arXiv:2006.15056 (2020). [arXiv]
  • Yan Liu, Zhijie Zhang, Li Niu, Junjie Chen, Liqing Zhang: "Mixed Supervised Object Detection by Transferring Mask Prior and Semantic Similarity." NeurIPS (2021) [code]

Weak-Shot Semantic Segmentation

Base category: semantic mask; Novel category: image label (weak-shot)

  • Siyuan Zhou, Li Niu, Jianlou Si, Chen Qian, Liqing Zhang: "Weak-shot Semantic Segmentation by Transferring Semantic Affinity and Boundary." arXiv preprint arXiv:2110.01519 (2021). [arXiv]

Weak-Shot Instance Segmentation

Base category: instance mask; Novel category: bounding box (partially-supervised)

  • Ronghang Hu, Piotr Dollar, Kaiming He, Trevor Darrell, Ross Girshick: "Learning to Segment Every Thing." CVPR (2018) [paper] [code]
  • Weicheng Kuo, Anelia Angelova, Jitendra Malik, Tsung-Yi Lin: "ShapeMask: Learning to Segment Novel Objects by Refining Shape Priors." ICCV (2019) [paper] [arXiv]
  • Yanzhao Zhou, Xin Wang, Jianbin Jiao, Trevor Darrell, Fisher Yu: "Learning Saliency Propagation for Semi-Supervised Instance Segmentation." CVPR (2020) [paper] [code]
  • Qi Fan, Lei Ke, Wenjie Pei, Chi-Keung Tang, Yu-Wing Tai: "Commonality-Parsing Network across Shape and Appearance for Partially Supervised Instance Segmentation." ECCV (2020) [arXiv] [code]
  • David Biertimpel, Sindi Shkodrani, Anil S. Baslamisli, Nora Baka: "Prior to Segment: Foreground Cues for Weakly Annotated Classes in Partially Supervised Instance Segmentation." arXiv preprint arXiv:2011.11787 (2020) [arXiv] [code]
  • Vighnesh Birodkar, Zhichao Lu, Siyang Li, Vivek Rathod, Jonathan Huang: "The Surprising Impact of Mask-head Architecture on Novel Class Segmentation." arXiv preprint arXiv:2104.00613 (2021) [arXiv] [code]
Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space

SeBoW: Self-Born Wiring for neural trees(PaddlePaddle version) This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural

HollyLee 13 Dec 08, 2022
FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman

Face Anonymizer Blur faces from image and video files in /input/ folder. Require

22 Nov 03, 2022
WTTE-RNN a framework for churn and time to event prediction

WTTE-RNN Weibull Time To Event Recurrent Neural Network A less hacky machine-learning framework for churn- and time to event prediction. Forecasting p

Egil Martinsson 727 Dec 28, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

186 Dec 18, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021