Awesome Weak-Shot Learning

Overview

Awesome Weak-Shot Learning Awesome

In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base categories have full annotations while novel categories only have weak annotations. In different tasks, weak annotation could be provided in different forms, e.g., noisy label for classification, image label for object detection, image label/bounding box for segmentation.

The comparison between weak-shot learning and zero/few-shot learning is illustrated below. In all three settings, all categories are split into non-overlapped base categories and novel categories. In all three settings, base categories have abundant fully-annotated training samples. In zero-shot learning, novel categories have no training samples, so class-level representations are required to bridge the gap between base categories and novel categories. In few-shot learning, novel categories have limited training samples. In weak-shot leanring, novel categories have abundant weakly-annotated training samples.

Contributing

Contributions are welcome. If you wish to contribute, feel free to send a pull request. If you have suggestions for new sections to be included, please raise an issue and discuss before sending a pull request.

Table of Contents

Survey

  • Li Niu: "Weak Novel Categories without Tears: A Survey on Weak-Shot Learning." arXiv preprint arXiv:2110.02651 (2021). [arXiv]

Weak-Shot Classification

Base category: clean label; Novel category: noisy label (weak-shot)

  • Junjie Chen, Li Niu, Liu Liu, Liqing Zhang: "Weak-shot Fine-grained Classification via Similarity Transfer." NeurIPS (2021) [arXiv] [code]

Weak-Shot Object Detection

Base category: bounding box; Novel category: image label (chaotic names: mixed-supervised, cross-supervised, partially-supervised, weak-shot)

  • Judy Hoffman, Sergio Guadarrama, Eric Tzeng, Ronghang Hu, Jeff Donahue, Ross Girshick, Trevor Darrell, Kate Saenko: "LSDA: Large Scale Detection Through Adaptation." NIPS (2014) [paper] [code]
  • Joseph Redmon, Ali Farhadi: "YOLO9000: Better, Faster, Stronger." CVPR (2017) [paper] [code]
  • Bharat Singh, Hengduo Li, Abhishek Sharma, Larry S. Davis: "R-FCN-3000 at 30fps: Decoupling detection and classification." CVPR (2018) [paper] [code]
  • Yan Li, Junge Zhang, Kaiqi Huang, Jianguo Zhang: "Mixed Supervised Object Detection with Robust Objectness Transfer." T-PAMI (2018) [paper] [arXiv]
  • Jason Kuen, Federico Perazzi, Zhe Lin, Jianming Zhang, Yap-Peng Tan: "Scaling Object Detection by Transferring Classification Weights." ICCV (2019) [paper] [code]
  • Yuanyi Zhong, Jianfeng Wang, Jian Peng, Lei Zhang: "Boosting Weakly Supervised Object Detection with Progressive Knowledge Transfer." ECCV (2020) [paper] [arXiv] [code]
  • Ye Guo, Yali Li, Shengjin Wang: "Cs-r-fcn: Cross-supervised Learning for Large-scale Object Detection." ICASSP (2020) [arXiv]
  • Zitian Chen, Zhiqiang Shen, Jiahui Yu, Erik Learned-Miller: "Cross-Supervised Object Detection." arXiv preprint arXiv:2006.15056 (2020). [arXiv]
  • Yan Liu, Zhijie Zhang, Li Niu, Junjie Chen, Liqing Zhang: "Mixed Supervised Object Detection by Transferring Mask Prior and Semantic Similarity." NeurIPS (2021) [code]

Weak-Shot Semantic Segmentation

Base category: semantic mask; Novel category: image label (weak-shot)

  • Siyuan Zhou, Li Niu, Jianlou Si, Chen Qian, Liqing Zhang: "Weak-shot Semantic Segmentation by Transferring Semantic Affinity and Boundary." arXiv preprint arXiv:2110.01519 (2021). [arXiv]

Weak-Shot Instance Segmentation

Base category: instance mask; Novel category: bounding box (partially-supervised)

  • Ronghang Hu, Piotr Dollar, Kaiming He, Trevor Darrell, Ross Girshick: "Learning to Segment Every Thing." CVPR (2018) [paper] [code]
  • Weicheng Kuo, Anelia Angelova, Jitendra Malik, Tsung-Yi Lin: "ShapeMask: Learning to Segment Novel Objects by Refining Shape Priors." ICCV (2019) [paper] [arXiv]
  • Yanzhao Zhou, Xin Wang, Jianbin Jiao, Trevor Darrell, Fisher Yu: "Learning Saliency Propagation for Semi-Supervised Instance Segmentation." CVPR (2020) [paper] [code]
  • Qi Fan, Lei Ke, Wenjie Pei, Chi-Keung Tang, Yu-Wing Tai: "Commonality-Parsing Network across Shape and Appearance for Partially Supervised Instance Segmentation." ECCV (2020) [arXiv] [code]
  • David Biertimpel, Sindi Shkodrani, Anil S. Baslamisli, Nora Baka: "Prior to Segment: Foreground Cues for Weakly Annotated Classes in Partially Supervised Instance Segmentation." arXiv preprint arXiv:2011.11787 (2020) [arXiv] [code]
  • Vighnesh Birodkar, Zhichao Lu, Siyang Li, Vivek Rathod, Jonathan Huang: "The Surprising Impact of Mask-head Architecture on Novel Class Segmentation." arXiv preprint arXiv:2104.00613 (2021) [arXiv] [code]
Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
Emotional conditioned music generation using transformer-based model.

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has b

hung anna 96 Nov 09, 2022
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
๐Ÿ•น๏ธ Official Implementation of Conditional Motion In-betweening (CMIB) ๐Ÿƒ

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
NumPy๋กœ ๊ตฌํ˜„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ž…๋‹ˆ๋‹ค. (์ž๋™ ๋ฏธ๋ถ„ ์ง€์›)

Deep Learning Library only using NumPy ๋ณธ ๋ ˆํฌ์ง€ํ† ๋ฆฌ๋Š” NumPy ๋งŒ์œผ๋กœ ๊ตฌํ˜„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ž…๋‹ˆ๋‹ค. ์ž๋™ ๋ฏธ๋ถ„์ด ๊ตฌํ˜„๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ž๋™ ๋ฏธ๋ถ„ ์ž๋™ ๋ฏธ๋ถ„์€ ๋ฏธ๋ถ„์„ ์ž๋™์œผ๋กœ ๊ณ„์‚ฐํ•ด์ฃผ๋Š” ๊ธฐ๋Šฅ์ž…๋‹ˆ๋‹ค. ์•„๋ž˜ ์ฝ”๋“œ๋Š” ์ž๋™ ๋ฏธ๋ถ„์„ ํ™œ์šฉํ•ด ์—ญ์ „ํŒŒ

์กฐ์ค€ํฌ 17 Aug 16, 2022
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"

StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois

THUNLP 19 Nov 20, 2022
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
Cowsay - A rewrite of cowsay in python

Python Cowsay A rewrite of cowsay in python. Allows for parsing of existing .cow

James Ansley 3 Jun 27, 2022
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022