TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

Overview

SLM: Structural Language Models of Code

This is an official implementation of the model described in:

"Structural Language Models of Code" [PDF]

To appear in ICML'2020.

An online demo is available at https://AnyCodeGen.org.

This repository currently contains the dataset and the data extractor that we used to create the Java dataset in the paper. The TensorFlow code will be released soon.

Feel free to open a new issue for any question. We always respond quickly.

Table of Contents

Requirements

  • python3
  • TensorFlow 1.13 or newer (install). To check TensorFlow version:

python3 -c 'import tensorflow as tf; print(tf.__version__)'

Download our preprocessed Java-small dataset

This dataset contains ~1.3M examples (1.1GB).

mkdir data
cd data
wget https://codegen-slm.s3.us-east-2.amazonaws.com/data/java-small-preprocessed.tar.gz
tar -xvzf java-small-preprocessed.tar.gz

This will create a data/java-small/ sub-directory, containing the files that hold training, test and validation sets, a dict file for various dataset properties and histograms, and a grammar file that is used during beam search to distinguish between terminal and non-terminal nodes.

Creating and preprocessing a new Java dataset

To create and preprocess a new dataset (for example, to compare SLM to a new model on another dataset):

  • Edit the file preprocess.sh using the instructions there, pointing it to the correct training, validation and test directories.
  • Run the preprocess.sh file:

bash preprocess.sh

Datasets

Java

To download the Java-small as raw *.java files, use:

To download the preprocessed dataset, use:

To download the dataset in a tokenized format that can be used in seq2seq models (for example, with OpenNMT-py), use:

The following JSON files are the files that are created by the JavaExtractor. The preprocessed and the seq2seq files are created from these JSON files:

Every line is a JSON object that contains the following fields: num_targets, num_nodes, targets, is_token, target_child_id, internal_paths, relative_paths, head_paths, head_root_path, head_child_id, linearized_tree, filepath, left_context, right_context, target_seq, line.

C#

The C# dataset that we used in the paper was created using the raw (*.cs files) dataset of Allamanis et al., 2018, (https://aka.ms/iclr18-prog-graphs-dataset) and can be found here: https://aka.ms/iclr18-prog-graphs-dataset.

To extract examples from the C# files, we modified the data extraction code of Brockschmidt et al., 2019: https://github.com/microsoft/graph-based-code-modelling/.

Querying the Trained Model

To query the trained model, use the following API, where MYCODE is the given code snippet, that includes two question marks (??) to mark the "hole" that should be completed:

curl -X POST https://w0w3uc4a63.execute-api.us-east-1.amazonaws.com/prod/predict -d '{"code": "MYCODE"}'

For example:

curl -X POST https://w0w3uc4a63.execute-api.us-east-1.amazonaws.com/prod/predict -d '{"code": "public static Path[] stat2Paths(FileStatus[] stats) {  if (stats == null) return null;  Path[] ret = new Path[stats.length]; for (int i = 0; i < stats.length; ++i) { ret[i] = ??; } return ret; }"}'

Citation

Structural Language Models of Code

@article{alon2019structural,
  title={Structural Language Models of Code},
  author={Alon, Uri and Sadaka, Roy and Levy, Omer and Yahav, Eran},
  journal={arXiv preprint arXiv:1910.00577},
  year={2019}
}
An off-line judger supporting distributed problem repositories

Thaw 中文 | English Thaw is an off-line judger supporting distributed problem repositories. Everyone can use Thaw release problems with license on GitHu

countercurrent_time 2 Jan 09, 2022
JAX + dataclasses

jax_dataclasses jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for: Pytree registrati

Brent Yi 35 Dec 21, 2022
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Cengizhan Yurdakul 3 Jan 29, 2022
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 05, 2023
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

43 Dec 12, 2022
Byzantine-robust decentralized learning via self-centered clipping

Byzantine-robust decentralized learning via self-centered clipping In this paper, we study the challenging task of Byzantine-robust decentralized trai

EPFL Machine Learning and Optimization Laboratory 4 Aug 27, 2022
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

Ibai Gorordo 45 Jan 01, 2023
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023