An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Overview

Fast Transformer Twitter

PyPI Lint Code Base Upload Python Package Code style: black

DOI GitHub License GitHub stars GitHub followers Twitter Follow

This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer variant based on additive attention that can handle long sequences efficiently with linear complexity. Fastformer is much more efficient than many existing Transformer models and can meanwhile achieve comparable or even better long text modeling performance.

Installation

Run the following to install:

pip install fast-transformer

Developing fast-transformer

To install fast-transformer, along with tools you need to develop and test, run the following in your virtualenv:

git clone https://github.com/Rishit-dagli/Fast-Transformer.git
# or clone your own fork

cd fast-transformer
pip install -e .[dev]

Usage

import tensorflow as tf
from fast_transformer import FastTransformer

mask = tf.ones([1, 4096], dtype=tf.bool)
model = FastTransformer(
    num_tokens = 20000,
    dim = 512,
    depth = 2,
    max_seq_len = 4096,
    absolute_pos_emb = True, # Absolute positional embeddings
    mask = mask
)
x = tf.experimental.numpy.random.randint(0, 20000, (1, 4096))

logits = model(x) # (1, 4096, 20000)

Want to Contribute 🙋‍♂️ ?

Awesome! If you want to contribute to this project, you're always welcome! See Contributing Guidelines. You can also take a look at open issues for getting more information about current or upcoming tasks.

Want to discuss? 💬

Have any questions, doubts or want to present your opinions, views? You're always welcome. You can start discussions.

Citation

@misc{wu2021fastformer,
    title   = {Fastformer: Additive Attention is All You Need}, 
    author  = {Chuhan Wu and Fangzhao Wu and Tao Qi and Yongfeng Huang},
    year    = {2021},
    eprint  = {2108.09084},
    archivePrefix = {arXiv},
    primaryClass = {cs.CL}
}

Yannic Kilcher's video was super helpful while building this.

License

Copyright 2020 Rishit Dagli

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
You might also like...
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

PixelPick This is an official implementation of the paper
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Code for
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Comments
  • Implement Additive Attention

    Implement Additive Attention

    Implement Additive Attention as a TensorFlow layer:

    • [x] Figure out using rotary embeddings
    • [x] Add masking functionality
    • [x] Relative Position embeddings
    • [x] Calculate query attention logits
    • [x] Calculate Global Query tokens
    • [x] Calculate key attention logits
    • [x] Calculate Global Key tokens
    • [x] Add queries as residuals
    opened by Rishit-dagli 0
Releases(v0.2.0)
  • v0.2.0(Jan 16, 2022)

    ✅ Bug Fixes / Improvements

    • Unit Tests for output rank and shape
    • Looser dependency requirements (now supports all TensorFlow versions >= 2.5.0)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Sep 3, 2021)

    This is the initial release of Fast Transformer and implements Fast Transformer as a subclassed TensorFlow model.

    Classes

    • FastAttention: Implements additive attention as a TensorFlow Keras layer, and supports using relative positional encodings.
    • PreNorm: Normalize the activations of the previous layer for each given example in a batch independently and apply some function to it, implemented as a TensorFlow Keras Layer.
    • FeedForward: Create a FeedForward neural net with two Dense layers and GELU activation, implemented as a TensorFlow Keras Layer.
    • FastTransformer: Implements the FastTransformer model using all the other classes, allows using rotary embeddings, weight tie projections, and converts to logits. Implemented as a TensorFlow Keras Model.
    Source code(tar.gz)
    Source code(zip)
Owner
Rishit Dagli
High School,TEDx,2xTED-Ed speaker | International Speaker | Microsoft Student Ambassador | Mentor, @TFUGMumbai | Organize @KotlinMumbai
Rishit Dagli
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
Linear Variational State Space Filters

Linear Variational State Space Filters To set up the environment, use the provided scripts in the docker/ folder to build and run the codebase inside

0 Dec 13, 2021
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning

PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo

Asa Cooper Stickland 70 Dec 29, 2022
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022
StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation

StyleGAN2 with adaptive discriminator augmentation (ADA) — Official TensorFlow implementation Training Generative Adversarial Networks with Limited Da

NVIDIA Research Projects 1.7k Dec 29, 2022
Deep GPs built on top of TensorFlow/Keras and GPflow

GPflux Documentation | Tutorials | API reference | Slack What does GPflux do? GPflux is a toolbox dedicated to Deep Gaussian processes (DGP), the hier

Secondmind Labs 107 Nov 02, 2022
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
Computational Methods Course at UdeA. Forked and size reduced from:

Computational Methods for Physics & Astronomy Book version at: https://restrepo.github.io/ComputationalMethods by: Sebastian Bustamante 2014/2015 Dieg

Diego Restrepo 11 Sep 10, 2022
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
113 Nov 28, 2022